Show simple item record

No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees

dc.contributor.authorMarvin, David C.en_US
dc.contributor.authorWinter, Klausen_US
dc.contributor.authorBurnham, Robyn J.en_US
dc.contributor.authorSchnitzer, Stefan A.en_US
dc.date.accessioned2015-05-04T20:36:51Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationMarvin, David C.; Winter, Klaus; Burnham, Robyn J.; Schnitzer, Stefan A. (2015). "No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees." Global Change Biology 21(5): 2055-2069.en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111213
dc.description.abstractRecent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.en_US
dc.publisherDR W. Junk Publishersen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercarbon cycleen_US
dc.subject.otherseasonal droughten_US
dc.subject.othertropical forestsen_US
dc.subject.otherPanamaen_US
dc.subject.otheropen‐top chambersen_US
dc.subject.othermixed‐effects modelsen_US
dc.subject.otherglobal changeen_US
dc.titleNo evidence that elevated CO2 gives tropical lianas an advantage over tropical treesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111213/1/gcb12820.pdf
dc.identifier.doi10.1111/gcb.12820en_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferencePoorter H, Niinemets U, Poorter L, Wright IJ, Villar R ( 2009 ) Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytologist, 182, 565 – 588.en_US
dc.identifier.citedreferencePaul GS, Yavitt JB ( 2011 ) Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. The Botanical Review, 77, 11 – 30.en_US
dc.identifier.citedreferencePerez‐Salicrup D ( 2001 ) Effect of liana cutting on tree regeneration in a liana forest in Amazonian Bolivia. Ecology, 82, 389 – 396.en_US
dc.identifier.citedreferencePerez‐Salicrup D, Sork V, Putz F ( 2001 ) Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica, 33, 34 – 47.en_US
dc.identifier.citedreferencePhillips OL, Gentry AH ( 1994 ) Increasing turnover through time in tropical forests. Science, 263, 954 – 958.en_US
dc.identifier.citedreferencePhillips OL, Vasquez‐Martinez R, Arroyo L et al. ( 2002 ) Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770 – 774.en_US
dc.identifier.citedreferencePinhero J, Bates D ( 2000 ) Mixed‐Effects Models in S and S‐PLUS. NY, Springer‐Verlag, New York.en_US
dc.identifier.citedreferencePutz F ( 1983 ) Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro basin, Venezuela. Biotropica, 15, 185 – 189.en_US
dc.identifier.citedreferencePutz F ( 1984 ) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713 – 1724.en_US
dc.identifier.citedreferencePutz FE, Windsor DM ( 1987 ) Liana phenology on Barro Colorado Island, Panama. Biotropica, 19, 334 – 341.en_US
dc.identifier.citedreferenceR Core Team ( 2013 ) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org /(accessed 15 December 2014).en_US
dc.identifier.citedreferenceSchnitzer SA ( 2015 ) A mechanistic explanation for global patterns of liana abundance and distribution. The American Naturalist, 166, 262 – 276.en_US
dc.identifier.citedreferenceSchnitzer SA ( 2014 ). Increasing liana abundance and biomass in neotropical forests: causes and consequences.pp 451 – 464. In: The Ecology of Lianas (eds Schnitzer SA, Bongers F, Burnham RJ, Putz FE ). Wiley‐Blackwell Publishing, Oxford. 504 pp.en_US
dc.identifier.citedreferenceSchnitzer SA, Bongers F ( 2011 ) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 14, 397 – 406.en_US
dc.identifier.citedreferenceSchnitzer SA, Carson WP ( 2001 ) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913 – 919.en_US
dc.identifier.citedreferenceSchnitzer SA, Carson WP ( 2010 ) Lianas suppress tree regeneration and diversity in treefall gaps. Ecology Letters, 13, 849 – 857.en_US
dc.identifier.citedreferenceSchnitzer SA, Mangan SA, Dalling JW et al. ( 2012 ) Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS One, 7, e52114.en_US
dc.identifier.citedreferenceSchnitzer SA, Bongers F, Burnham RJ, Putz FE ( 2015 ). The Ecology of Lianas. Wiley‐Blackwell, Oxford. 504 pp.en_US
dc.identifier.citedreferenceTobin MF, Wright AJ, Mangan SA, Schnitzer SA ( 2012 ) Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere, 3, Article 20.en_US
dc.identifier.citedreferenceToledo‐Aceves T, Swaine M ( 2008 ) Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. Journal of Vegetation Science, 19, 717 – 728.en_US
dc.identifier.citedreferenceWhigham D ( 1984 ) The influence of vines on the growth of Liquidambar styraciflua L. (sweetgum). Canadian Journal of Forest Research, 14, 37 – 39.en_US
dc.identifier.citedreferenceWright SJ, Calderon O ( 2006 ) Seasonal, El Nino and longer term changes in flower and seed production in a moist tropical forest. Ecology Letters, 9, 35 – 44.en_US
dc.identifier.citedreferenceWright SJ, Calderon O, Hernandez A, Paton S ( 2004 ) Are lianas increasing in importance in tropical forests? A 17‐year record from Panama. Ecology, 85, 484 – 489.en_US
dc.identifier.citedreferenceYorke SR, Schnitzer SA, Mascaro J, Letcher SG ( 2013 ) Increasing liana abundance and basal area in a tropical forest: the contribution of long‐distance clonal colonization. Biotropica, 45, 317 – 324.en_US
dc.identifier.citedreferenceZhu SD, Cao KF ( 2009 ) Hydraulic properties and photosynthetic rates in co‐occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204, 295 – 304.en_US
dc.identifier.citedreferenceZhu SD, Cao KF ( 2010 ) Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163, 591 – 599.en_US
dc.identifier.citedreferenceAlvarez‐Cansino L, Schnitzer SA, Reid JP, Powers JS (in press) Liana competition with tropical trees varies with seasonal rainfall and soil moisture, but not tree species identity. Ecology, doi.org/10.1890/14‐1002.1.en_US
dc.identifier.citedreferenceAsner GP, Martin RE ( 2012 ) Contrasting leaf chemical traits in tropical lianas and trees: Implications for future forest composition. Ecology Letters, 15, 1001 – 1007.en_US
dc.identifier.citedreferenceBates D, Maechler M, Bolker B ( 2012 ) lme4: Linear mixed‐effects models using S4 classes. R package version 0.999999‐0.en_US
dc.identifier.citedreferenceBattipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca Cotrufo M ( 2012 ) Elevated CO 2 increases tree‐level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist, 197, 544 – 554.en_US
dc.identifier.citedreferenceBenítez‐Malvido J, Martinez‐Ramos M ( 2003 ) Impact of forest fragmentation on understory plant species richness in Amazonia. Conservation Biology, 17, 389 – 400.en_US
dc.identifier.citedreferenceCai Z‐Q, Schnitzer SA, Bongers F ( 2009 ) Seasonal differences in leaf‐level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia, 161, 25 – 33.en_US
dc.identifier.citedreferenceCernusak L, Winter K, Dalling JW et al. ( 2013 ) Tropical forest responses to increasing atmospheric CO 2: current knowledge and opportunities for future research. Functional Plant Biology, 40, 531 – 551.en_US
dc.identifier.citedreferenceChave J, Condit R, Muller‐Landau H et al. ( 2008 ) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology, 6, e45.en_US
dc.identifier.citedreferenceChazdon RL, Fetcher N ( 1983 ) Light environments of tropical forests. In: Physiological Ecology of Plants of the Wet Tropics (eds Medina E, Mooney HA, Vazquez‐Yanes C ), pp. 27 – 36. DR W. Junk Publishers, The Hauge.en_US
dc.identifier.citedreferenceChen Y‐J, Fan Z‐X, Schnitzer SA, Zhang JL, Cao K‐F, Bongers F ( 2015 ) Water‐use advantage of lianas over trees in seasonal tropical forests. New Phytologist, 205, 128 – 136.en_US
dc.identifier.citedreferenceClark DB, Clark DA ( 1990 ) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. Journal of Tropical Ecology, 6, 321 – 331.en_US
dc.identifier.citedreferenceCondit R, Watts K, Bohlman SA, Perez R, Foster RB, Hubbell SP ( 2000 ) Quantifying the deciduousness of tropical forest canopies under varying climates. Journal of Vegetation Science, 11, 649 – 658.en_US
dc.identifier.citedreferenceCondon M, Sasek T, Strain B ( 1992 ) Allocation patterns in 2 tropical vines in response to increased atmospheric CO 2. Functional Ecology, 6, 680 – 685.en_US
dc.identifier.citedreferenceDalling JW, Schnitzer SA, Baldeck C et al. ( 2012 ) Resource‐based habitat associations in a neotropical liana community. Journal of Ecology, 100, 1174 – 1182.en_US
dc.identifier.citedreferenceDeWalt S, Chave J ( 2004 ) Structure and biomass of four lowland Neotropical forests. Biotropica, 36, 7 – 19.en_US
dc.identifier.citedreferenceDeWalt S, Schnitzer SA, Denslow J ( 2000 ) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 16, 1 – 19.en_US
dc.identifier.citedreferenceDeWalt S, Schnitzer SA, Chave J, Bongers F ( 2010 ) Annual rainfall and seasonality predict pan‐tropical patterns of liana density and basal area. Biotropica, 42, 309 – 317.en_US
dc.identifier.citedreferenceDillenburg LR, Whigham DF, Teramura AH, Forseth IN ( 1993 ) Effects of below‐ and aboveground competition from the vines Lonicera japonica and Parthenocissus quinquefolia on the growth of the tree host Liquidambar styraciflua. Oecologia, 93, 48 – 54.en_US
dc.identifier.citedreferenceDomingues TF, Martinelli LA, Ehleringer JR ( 2007 ) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecology, 193, 101 – 112.en_US
dc.identifier.citedreferenceEnquist BJ, Enquist CAF ( 2011 ) Long‐term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Global Change Biology, 17, 1408 – 1424.en_US
dc.identifier.citedreferenceFoster TE, Brooks JR ( 2005 ) Functional groups based on leaf physiology: are they spatially and temporally robust? Oecologia, 144, 337 – 352.en_US
dc.identifier.citedreferenceGarrido‐Perez E, Dupuy J, Duran‐Garcia R, Ucan‐May M, Schnitzer SA, Gerold G ( 2008 ) Effects of lianas and Hurricane Wilma on tree damage in the Yucatan Peninsula, Mexico. Journal of Tropical Ecology, 24, 559 – 562.en_US
dc.identifier.citedreferenceGelman A, Hill J ( 2007 ) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York, NY.en_US
dc.identifier.citedreferenceGerwing J, Farias D ( 2000 ) Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology, 16, 327 – 335.en_US
dc.identifier.citedreferenceGranados J, Körner C ( 2002 ) In deep shade, elevated CO 2 increases the vigor of tropical climbing plants. Global Change Biology, 8, 1109 – 1117.en_US
dc.identifier.citedreferenceGrauel W, Putz F ( 2004 ) Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. Forest Ecology and Management, 190, 99 – 108.en_US
dc.identifier.citedreferenceHedges LV, Gurevitch J, Curtis PS ( 1999 ) The meta‐analysis of response ratios in experimental ecology. Ecology, 80, 1150 – 1156.en_US
dc.identifier.citedreferencevan der Heijden GMF, Phillips OL ( 2009 ) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences, 6, 2217 – 2226.en_US
dc.identifier.citedreferencevan der Heijden GM, Schnitzer SA, Powers JS, Phillips OL ( 2013 ) Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica, 45, 682 – 692.en_US
dc.identifier.citedreferenceHubbell SP, Condit R, Foster RB ( 2005 ) Barro Colorado Forest Census Plot Data. Available at: https://ctfs.arnarb.harvard.edu/webatlas/datasets/bci (accessed 15 December 2014).en_US
dc.identifier.citedreferenceIngwell L, Wright SJ, Becklund K, Hubbell S, Schnitzer SA ( 2010 ) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology, 98, 879 – 887.en_US
dc.identifier.citedreferenceIPCC ( 2013 ) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker TF, Qin D, Plattner G‐K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM ). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.en_US
dc.identifier.citedreferenceKörner C ( 2009 ) Responses of humid tropical trees to rising CO 2. Annual Review of Ecology, 40, 61 – 79.en_US
dc.identifier.citedreferenceKörner C, Arnone JA ( 1992 ) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science, 257, 1672 – 1675.en_US
dc.identifier.citedreferenceLaurance WF, Andrade AS, Magrach A et al. ( 2014 ) Long‐term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology, 95, 1604 – 1611.en_US
dc.identifier.citedreferenceLedo A, Schnitzer SA ( 2014 ) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology, 95, 2169 – 2178.en_US
dc.identifier.citedreferenceLenth RV ( 2013 ) Package ‘lsmeans’. Avialable at: cran.r‐project.org/web/packages/lsmeans.(accessed 15 December 2014)en_US
dc.identifier.citedreferenceLetcher SG, Chazdon RL ( 2009 ) Lianas and self‐supporting plants during tropical forest succession. Forest Ecology and Management, 257, 2150 – 2156.en_US
dc.identifier.citedreferenceLowe R, Walker P ( 1977 ) Classification of canopy, stem, crown status and climber infestation in natural tropical forest in Nigeria. Journal of Applied Ecology, 14, 897 – 903.en_US
dc.identifier.citedreferenceMohan J, Ziska L, Schlesinger W, Thomas R, Sicher R, George K, Clark JS ( 2006 ) Biomass and toxicity responses of poison ivy ( Toxicodendron radicans ) to elevated atmospheric CO 2. Proceedings of the National Academy of Sciences of the United States of America, 103, 9086 – 9089.en_US
dc.identifier.citedreferenceMoore C ( 2010 ) Linear mixed‐effects regression p‐values in R: A likelihood ratio test function. Available at: http://blog.lib.umn.edu/moor0554/canoemoore/2010/09/lmer_p-values_lrt.html. (accessed 15 December 2014).en_US
dc.identifier.citedreferenceNOAA ( 2013 ) Mauna Loa CO 2 Data. Earth Systems Research Laboratory, Boulder, CO.en_US
dc.identifier.citedreferencePan Y, Birdsey RA, Fang J et al. ( 2011 ) A large and persistent carbon sink in the world's forests. Science, 333, 988 – 993.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.