Show simple item record

Towards a Universal Two-Qubit Gate with Self-Assembled InAs Quantum Dot Molecules.

dc.contributor.authorChow, Colin M. E.en_US
dc.date.accessioned2015-09-30T14:23:40Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-09-30T14:23:40Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113477
dc.description.abstractRecent studies in self-assembled InAs quantum dots (QDs) for applications in quantum information processing have demonstrated initialization, readout and long decoherence time of an electron spin confined in a single QD. These arguably fulfill three out of the five DiVincenzo criteria for the physical implementation of quantum computation. Based on recent developments self-assembled InAs quantum dot molecules (QDMs), several advancements in the optical manipulation of two-electron spin states have been made. As a continuation of these studies towards a full two-qubit system, this thesis addresses one of the remaining criteria concerning a universal set of quantum gates. The physical platform for two-qubit gates is provided by two electrons confined in the QDM where the Coulomb exchange interaction gives rise to the singlet and triplet manifolds. In a transverse magnetic field, an eight-level system consisting of four singlet-triplet spin states, four optical excited states and twelve dipole allowed transitions arises. Spin initialization via multi-laser optical pumping is demonstrated with near unity fidelity for three of the spin states, while the remaining one can, in principle, be achieved by coherent optical pumping using four CW lasers. The effects of dynamic nuclear spin polarization, arising from the coupling between the electrons and the surrounding nuclei, is evident in the frequency pulling and pushing lineshapes in absorption profiles. This thesis shows that the optical nuclear spin locking that was demonstrated in a single QD earlier is effective in QDMs, yielding a long spin decoherence time of about 1 microsecond. Spectroscopic evidence suggests that this is accompanied by the first evidence of a narrowing in the Overhauser field distribution. The results reveal that stabilization of nuclear spin polarization in both QDs is achieved by optical manipulations in the top QD, demonstrating the effect of non-local nuclear spin locking. Finally, it is shown theoretically that pulsed excitation results in single spin rotations and in conjunction with the Coulomb exchange interaction, provides the ingredients for a universal two-qubit gate. A feasible experimental demonstration of the two-qubit gate is proposed, along with the methodology for the population readout of individual spin states.en_US
dc.language.isoen_USen_US
dc.subjectquantum opticsen_US
dc.subjectquantum dot moleculesen_US
dc.subjectquantum computationen_US
dc.subjectdynamic nuclear spin polarizationen_US
dc.titleTowards a Universal Two-Qubit Gate with Self-Assembled InAs Quantum Dot Molecules.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSteel, Duncan G.en_US
dc.contributor.committeememberDeng, Huien_US
dc.contributor.committeememberSih, Vanessaen_US
dc.contributor.committeememberNorris, Theodore B.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113477/1/colinmec_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.