Show simple item record

Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long‐Term Outcomes

dc.contributor.authorModena, B. D.
dc.contributor.authorKurian, S. M.
dc.contributor.authorGaber, L. W.
dc.contributor.authorWaalen, J.
dc.contributor.authorSu, A. I.
dc.contributor.authorGelbart, T.
dc.contributor.authorMondala, T. S.
dc.contributor.authorHead, S. R.
dc.contributor.authorPapp, S.
dc.contributor.authorHeilman, R.
dc.contributor.authorFriedewald, J. J.
dc.contributor.authorFlechner, S. M.
dc.contributor.authorMarsh, C. L.
dc.contributor.authorSung, R. S.
dc.contributor.authorShidban, H.
dc.contributor.authorChan, L.
dc.contributor.authorAbecassis, M. M.
dc.contributor.authorSalomon, D. R.
dc.date.accessioned2016-07-06T18:21:19Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationModena, B. D.; Kurian, S. M.; Gaber, L. W.; Waalen, J.; Su, A. I.; Gelbart, T.; Mondala, T. S.; Head, S. R.; Papp, S.; Heilman, R.; Friedewald, J. J.; Flechner, S. M.; Marsh, C. L.; Sung, R. S.; Shidban, H.; Chan, L.; Abecassis, M. M.; Salomon, D. R. (2016). "Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long‐Term Outcomes." American Journal of Transplantation (7): 1982-1998.
dc.identifier.issn1600-6135
dc.identifier.issn1600-6143
dc.identifier.urihttps://hdl.handle.net/2027.42/122411
dc.publisherWiley Periodicals, Inc.
dc.subject.othertranslational research/science
dc.subject.otherbasic (laboratory) research/science
dc.subject.otherkidney transplantation/nephrology
dc.subject.otherimmunobiology
dc.subject.otherorgan transplantation in general
dc.subject.othergenomics
dc.subject.othergraft survival
dc.subject.otherkidney (allograft) function/dysfunction
dc.subject.otherInterstitial fibrosis and tubular atrophy
dc.subject.otherrejection: T cell mediated (TCMR)
dc.titleGene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long‐Term Outcomes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122411/1/ajt13728.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122411/2/ajt13728-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122411/3/ajt13728-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122411/4/ajt13728_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/122411/5/ajt13728-sup-0004-AppendixS4.pdf
dc.identifier.doi10.1111/ajt.13728
dc.identifier.sourceAmerican Journal of Transplantation
dc.identifier.citedreferenceJackson JA, Kim EJ, Begley B, et al. Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am J Transplant 2011; 11: 2228 – 2234.
dc.identifier.citedreferenceNaesens M, Li L, Ying L, et al. Expression of complement components differs between kidney allografts from living and deceased donors. J Am Soc Nephrol 2009; 20: 1839 – 1851.
dc.identifier.citedreferenceFamulski KS, Reeve J, de Freitas DG, Kreepala C, Chang J, Halloran PF. Kidney transplants with progressing chronic diseases express high levels of acute kidney injury transcripts. Am J Transplant 2013; 13: 634 – 644.
dc.identifier.citedreferenceFlechner SM, Kurian SM, Head SR, et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant 2004; 4: 1475 – 1489.
dc.identifier.citedreferenceKainz A, Mitterbauer C, Hauser P, et al. Alterations in gene expression in cadaveric vs. live donor kidneys suggest impaired tubular counterbalance of oxidative stress at implantation. Am J Transplant 2004; 4: 1595 – 1604.
dc.identifier.citedreferenceFamulski KS, de Freitas DG, Kreepala C, et al. Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol 2012; 23: 948 – 958.
dc.identifier.citedreferenceReeve J, Einecke G, Mengel M, et al. Diagnosing rejection in renal transplants: A comparison of molecular‐ and histopathology‐based approaches. Am J Transplant 2009; 9: 1802 – 1810.
dc.identifier.citedreferenceFamulski KS, Einecke G, Reeve J, et al. Changes in the transcriptome in allograft rejection: IFN‐gamma‐induced transcripts in mouse kidney allografts. Am J Transplant 2006; 6: 1342 – 1354.
dc.identifier.citedreferenceEinecke G, Melk A, Ramassar V, et al. Expression of CTL associated transcripts precedes the development of tubulitis in T‐cell mediated kidney graft rejection. Am J Transplant 2005; 5: 1827 – 1836.
dc.identifier.citedreferenceChen R, Sigdel TK, Li L, et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross‐organ transplant rejection and other conditions. PLoS Comput Biol 2010; 6: e1000940.
dc.identifier.citedreferenceKhatri P, Roedder S, Kimura N, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med 2013; 210: 2205 – 2221.
dc.identifier.citedreferenceFreue GV, Sasaki M, Meredith A, et al. Proteomic signatures in plasma during early acute renal allograft rejection. Mol Cell Proteomics 2010; 9: 1954 – 1967.
dc.identifier.citedreferencePerco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int 2007; 20: 2 – 11.
dc.identifier.citedreferenceBunnag S, Einecke G, Reeve J, et al. Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol 2009; 20: 1149 – 1160.
dc.identifier.citedreferenceStein‐Oakley AN, Tzanidis A, Fuller PJ, Jablonski P, Thomson NM. Expression and distribution of epidermal growth factor in acute and chronic renal allograft rejection. Kidney Int 1994; 46: 1207 – 1215.
dc.identifier.citedreferenceHu H, Aizenstein BD, Puchalski A, Burmania JA, Hamawy MM, Knechtle SJ. Elevation of CXCR3‐binding chemokines in urine indicates acute renal‐allograft dysfunction. Am J Transplant 2004; 4: 432 – 437.
dc.identifier.citedreferenceStroo I, Stokman G, Teske GJ, et al. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. Int Immunol 2010; 22: 433 – 442.
dc.identifier.citedreferenceAkalin E, Hendrix RC, Polavarapu RG, et al. Gene expression analysis in human renal allograft biopsy samples using high‐density oligoarray technology. Transplantation 2001; 72: 948 – 953.
dc.identifier.citedreferenceHu H, Kwun J, Aizenstein BD, Knechtle SJ. Noninvasive detection of acute and chronic injuries in human renal transplant by elevation of multiple cytokines/chemokines in urine. Transplantation 2009; 87: 1814 – 1820.
dc.identifier.citedreferenceSchaub S, Nickerson P, Rush D, et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant 2009; 9: 1347 – 1353.
dc.identifier.citedreferenceHauser IA, Spiegler S, Kiss E, et al. Prediction of acute renal allograft rejection by urinary monokine induced by IFN‐gamma (MIG). J Am Soc Nephrol 2005; 16: 1849 – 1858.
dc.identifier.citedreferenceCarpio VN, Noronha Ide L, Martins HL, et al. Expression patterns of B cells in acute kidney transplant rejection. Exp Clin Transplant 2014; 12: 405 – 414.
dc.identifier.citedreferenceRodrigues CA, Franco MF, Cristelli MP, Pestana JOM, Tedesco‐Silva HJ. Clinicopathological characteristics and effect of late acute rejection on renal transplant outcomes. Transplantation 2014; 98: 885 – 892.
dc.identifier.citedreferenceGourishankar S, Leduc R, Connett J, et al. Pathological and clinical characterization of the “troubled transplant”: Data from the DeKAF study. Am J Transplant 2010; 10: 324 – 330.
dc.identifier.citedreferenceEid L, Tuchman S, Moudgil A. Late acute rejection: Incidence, risk factors, and effect on graft survival and function. Pediatr Transplant 2014; 18: 155 – 162.
dc.identifier.citedreferenceJiang H, Pan F, Erickson LM, et al. Deletion of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, suppresses cardiac allograft rejection. J Exp Med 2005; 202: 1121 – 1130.
dc.identifier.citedreferenceSpivey TL, Uccellini L, Ascierto ML, et al. Gene expression profiling in acute allograft rejection: Challenging the immunologic constant of rejection hypothesis. J Transl Med 2011; 9: 174.
dc.identifier.citedreferenceEdemir B, Kurian SM, Eisenacher M, et al. Activation of counter‐regulatory mechanisms in a rat renal acute rejection model. BMC Genom 2008; 9: 71.
dc.identifier.citedreferenceEinecke G, Broderick G, Sis B, Halloran PF. Early loss of renal transcripts in kidney allografts: Relationship to the development of histologic lesions and alloimmune effector mechanisms. Am J Transplant 2007; 7: 1121 – 1130.
dc.identifier.citedreferenceRonco P, Debiec H. Molecular pathomechanisms of membranous nephropathy: From Heymann nephritis to alloimmunization. J Am Soc Nephrol 2005; 16: 1205 – 1213.
dc.identifier.citedreferenceAllen RC, Armitage RJ, Conley ME, et al. CD40 ligand gene defects responsible for X‐linked hyper‐IgM syndrome. Science 1993; 259: 990 – 993.
dc.identifier.citedreferenceKingsbury GA, Feeney LA, Nong Y, et al. Cloning, expression, and function of BLAME, a novel member of the CD2 family. J Immunol 2001; 166: 5675 – 5680.
dc.identifier.citedreferenceKimata H, Yoshida A, Ishioka C, Fujimoto M, Lindley I, Furusho K. RANTES and macrophage inflammatory protein 1 alpha selectively enhance immunoglobulin (IgE) and IgG4 production by human B cells. J Exp Med 1996; 183: 2397 – 2402.
dc.identifier.citedreferenceHalloran PF, Chang J, Famulski K, et al. Disappearance of T cell‐mediated rejection despite continued antibody‐mediated rejection in late kidney transplant recipients. J Am Soc Nephrol 2015; 26: 1711 – 1720.
dc.identifier.citedreferenceTerasaki PI, Ozawa M. Predicting kidney graft failure by HLA antibodies: A prospective trial. Am J Transplant 2004; 4: 438 – 443.
dc.identifier.citedreferenceWiebe C, Gibson IW, Blydt‐Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor‐specific HLA antibody post kidney transplant. Am J Transplant 2012; 12: 1157 – 1167.
dc.identifier.citedreferenceWiebe C, Gibson IW, Blydt‐Hansen TD, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor‐specific antibody. Am J Transplant 2015; 15: 2921 – 2930.
dc.identifier.citedreferenceNickeleit V, Andreoni K. The classification and treatment of antibody‐mediated renal allograft injury: Where do we stand? Kidney Int 2007; 71: 7 – 11.
dc.identifier.citedreferenceNickeleit V, Mihatsch MJ. Kidney transplants, antibodies and rejection: Is C4d a magic marker? Nephrol Dial Transplant 2003; 18: 2232 – 2239.
dc.identifier.citedreferenceMagil AB, Tinckam KJ. Focal peritubular capillary C4d deposition in acute rejection. Nephrol Dial Transplant 2006; 21: 1382 – 1388.
dc.identifier.citedreferenceMatas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 Annual Data Report: Kidney. Am J Transplant 2014; 14 ( suppl 1 ): 11 – 44.
dc.identifier.citedreferencevan Kooten C, Banchereau J. CD40‐CD40 ligand. J Leukoc Biol 2000; 67: 2 – 17.
dc.identifier.citedreferenceMannon RB, Matas AJ, Grande J, et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: A potent predictor of allograft failure. Am J Transplant 2010; 10: 2066 – 2073.
dc.identifier.citedreferencePark WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflammation at one year predicts transplant functional decline. J Am Soc Nephrol 2010; 21: 1987 – 1997.
dc.identifier.citedreferenceCosio FG, Grande JP, Wadei H, Larson TS, Griffin MD, Stegall MD. Predicting subsequent decline in kidney allograft function from early surveillance biopsies. Am J Transplant 2005; 5: 2464 – 2472.
dc.identifier.citedreferenceHeilman RL, Smith ML, Kurian SM, et al. Transplanting kidneys from deceased donors with severe acute kidney injury. Am J Transplant 2015; 15: 2143 – 2151.
dc.identifier.citedreferenceLoupy A, Vernerey D, Tinel C, et al. Subclinical rejection phenotypes at 1 year post‐transplant and outcome of kidney allografts. J Am Soc Nephrol 2015; 26: 1721 – 1731.
dc.identifier.citedreferenceMeier‐Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004; 4: 378 – 383.
dc.identifier.citedreferenceHart A, Smith JM, Skeans MA, et al. Kidney. Am J Transplant 2016; 16: 11 – 46.
dc.identifier.citedreferenceJoosten SA, van Kooten C, Sijpkens YW, de Fijter JW, Paul LC. The pathobiology of chronic allograft nephropathy: Immune‐mediated damage and accelerated aging. Kidney Int 2004; 65: 1556 – 1559.
dc.identifier.citedreferenceEl Ters M, Grande JP, Keddis MT, et al. Kidney allograft survival after acute rejection, the value of follow‐up biopsies. Am J Transplant 2013; 13: 2334 – 2341.
dc.identifier.citedreferenceNickerson PW, Rush DN. Rejection: An integrated response. Am J Transplant 2013; 13: 2239 – 2240.
dc.identifier.citedreferenceNankivell BJ, Chapman JR. The significance of subclinical rejection and the value of protocol biopsies. Am J Transplant 2006; 6: 2006 – 2012.
dc.identifier.citedreferenceLegendre C, Thervet E, Skhiri H, et al. Histologic features of chronic allograft nephropathy revealed by protocol biopsies in kidney transplant recipients. Transplantation 1998; 65: 1506 – 1509.
dc.identifier.citedreferenceSeron D, Moreso F. Protocol biopsies in renal transplantation: Prognostic value of structural monitoring. Kidney Int 2007; 72: 690 – 697.
dc.identifier.citedreferenceHeilman RL, Devarapalli Y, Chakkera HA, et al. Impact of subclinical inflammation on the development of interstitial fibrosis and tubular atrophy in kidney transplant recipients. Am J Transplant 2010; 10: 563 – 570.
dc.identifier.citedreferenceRush DN, Henry SF, Jeffery JR, Schroeder TJ, Gough J. Histological findings in early routine biopsies of stable renal allograft recipients. Transplantation 1994; 57: 208 – 211.
dc.identifier.citedreferenceEinecke G, Reeve J, Sis B, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest 2010; 120: 1862 – 1872.
dc.identifier.citedreferenceHalloran PF, Pereira AB, Chang J, et al. Potential impact of microarray diagnosis of T cell‐mediated rejection in kidney transplants: The INTERCOM study. Am J Transplant 2013; 13: 2352 – 2363.
dc.identifier.citedreferenceStorey JD. A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 2002; 64: 479 – 498.
dc.identifier.citedreferenceMorgun A, Shulzhenko N, Perez‐Diez A, et al. Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ Res 2006; 98: e74 – e83.
dc.identifier.citedreferenceSarwal M, Chua MS, Kambham N, et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med 2003; 349: 125 – 138.
dc.identifier.citedreferenceSaint‐Mezard P, Berthier CC, Zhang H, et al. Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection. Transpl Int 2009; 22: 293 – 302.
dc.identifier.citedreferenceHauser P, Schwarz C, Mitterbauer C, et al. Genome‐wide gene‐expression patterns of donor kidney biopsies distinguish primary allograft function. Lab Invest 2004; 84: 353 – 361.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.