Show simple item record

Largeâ eddy simulation of biogenic VOC chemistry during the DISCOVERâ AQ 2011 campaign

dc.contributor.authorLi, Yang
dc.contributor.authorBarth, Mary C.
dc.contributor.authorChen, Gao
dc.contributor.authorPatton, Edward G.
dc.contributor.authorKim, Si‐wan
dc.contributor.authorWisthaler, Armin
dc.contributor.authorMikoviny, Tomas
dc.contributor.authorFried, Alan
dc.contributor.authorClark, Richard
dc.contributor.authorSteiner, Allison L.
dc.date.accessioned2016-09-17T23:54:02Z
dc.date.available2017-10-05T14:33:48Zen
dc.date.issued2016-07-16
dc.identifier.citationLi, Yang; Barth, Mary C.; Chen, Gao; Patton, Edward G.; Kim, Si‐wan ; Wisthaler, Armin; Mikoviny, Tomas; Fried, Alan; Clark, Richard; Steiner, Allison L. (2016). "Largeâ eddy simulation of biogenic VOC chemistry during the DISCOVERâ AQ 2011 campaign." Journal of Geophysical Research: Atmospheres 121(13): 8083-8105.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/133566
dc.description.abstractBiogenic volatile organic compounds (BVOCs) are oxidized quickly in the atmosphere to form oxygenated VOC (OVOC) and play crucial roles in the formation of ozone and secondary organic aerosols. We use the National Center for Atmospheric Research’s largeâ eddy simulation model and Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2011 flight data to understand the role of boundary layer turbulence on the atmospheric chemistry of key BVOC species and their oxidation products. We simulate three distinct convective environments during the campaign, representing fair weather conditions (case 1: 1 July), a convective event dominated by southwesterly flow (case 2: 11 July), and a polluted event with high temperature and convection (case 3: 29 July). Isoprene segregation is greatest in the lower boundary layer under warm and convective conditions, reaching up to a 10% reduction in the isopreneâ OH reaction rate. Under warm and convective conditions, the BVOC lifetimes lengthen due to increased isoprene emission, elevated initial chemical concentrations, and OH competition. Although turbulenceâ driven segregation has less influence on the OVOC species, convection mixes more OVOC into the upper atmospheric boundary layer (ABL) and increases the total OH reactivity. Production and loss rates of ozone above 2â km in all the three cases indicate in situ ozone formation in addition to vertical convective transport of ozone from the surface and aloft, consistent with the increased contribution of OH reactivity from OVOC. Together, these results show that total OH reactivity in the ABL increases under warmer and stronger convective conditions due to enhanced isoprene emission and the OVOC contribution to ozone formation.Key PointsLES and DISCOVERâ AQ flight data are compared to understand the role of turbulence on BVOC chemistryTurbulenceâ induced segregation is less important for OVOC than isoprene, but OVOC compensates for isoprene rate reductionsConvection mixes more OVOC into the upper ABL and increases total OH reactivity
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherturbulence
dc.subject.otherOH reactivity
dc.subject.othersegregation
dc.subject.otherisoprene
dc.titleLargeâ eddy simulation of biogenic VOC chemistry during the DISCOVERâ AQ 2011 campaign
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133566/1/jgrd53113_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133566/2/jgrd53113-sup-0001-SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133566/3/jgrd53113.pdf
dc.identifier.doi10.1002/2016JD024942
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSchumann, U. ( 1989 ), Largeâ eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer, Atmos. Environ., 23 ( 8 ), 1713 â 1727, doi: 10.1016/0004-6981(89)90056-5.
dc.identifier.citedreferencePatton, E. G., P. P. Sullivan, and C.â H. Moeng ( 2005 ), The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface, J. Atmos. Sci., 62 ( 7 ), 2078 â 2097, doi: 10.1175/JAS3465.1.
dc.identifier.citedreferencePlacet, M., C. O. Mann, R. O. Gilbert, and M. J. Niefer ( 2000 ), Emissions of ozone precursors from stationary sources: A critical review, Atmos. Environ., 34 ( 12â 14 ), 2183 â 2204, doi: 10.1016/S1352-2310(99)00464-1.
dc.identifier.citedreferenceRen, X., et al. ( 2003 ), OH and HO 2 chemistry in the urban atmosphere of New York City, Atmos. Environ., 37 ( 26 ), 3639 â 3651, doi: 10.1016/S1352-2310(03)00459-X.
dc.identifier.citedreferenceRienecker, M. M., et al. ( 2011 ), MERRA: NASA’s Modernâ Era Retrospective Analysis for Research and Applications, J. Clim., 24 ( 14 ), 3624 â 3648, doi: 10.1175/JCLI-D-11-00015.1.
dc.identifier.citedreferenceRiveraâ Rios, J. C., et al. ( 2014 ), Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry, Geophys. Res. Lett., 41, 8645 â 8651, doi: 10.1002/2014GL061919.
dc.identifier.citedreferenceSawyer, R. F., R. A. Harley, S. H. Cadle, J. M. Norbeck, R. Slott, and H. A. Bravo ( 2000 ), Mobile sources critical review: 1998 NARSTO assessment, Atmos. Environ., 34 ( 12â 14 ), 2161 â 2181, doi: 10.1016/S1352-2310(99)00463-X.
dc.identifier.citedreferenceSeco, R., J. Peñuelas, and I. Filella ( 2007 ), Shortâ chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations, Atmos. Environ., 41 ( 12 ), 2477 â 2499, doi: 10.1016/j.atmosenv.2006.11.029.
dc.identifier.citedreferenceSeco, R., J. Penuelas, I. Filella, and J. Llusia ( 2013 ), Volatile organic compounds in the western Mediterranean basin: Urban and rural winter measurements during the DAURE campaign, Atmos. Chem. Phys., 13 ( 8 ), 4291 â 4306, doi: 10.5194/acp-13-4291-2013.
dc.identifier.citedreferenceSillman, S. ( 1999 ), The relation between ozone, NO x and hydrocarbons in urban and polluted rural environments, Atmos. Environ., 33 ( 12 ), 1821 â 1845, doi: 10.1016/S1352-2310(98)00345-8.
dc.identifier.citedreferenceSingh, H., Y. Chen, A. Staudt, D. Jacob, D. Blake, B. Heikes, and J. Snow ( 2001 ), Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds, Nature, 410 ( 6832 ), 1078 â 1081.
dc.identifier.citedreferenceSpaulding, R. S., G. W. Schade, A. H. Goldstein, and M. J. Charles ( 2003 ), Characterization of secondary atmospheric photooxidation products: Evidence for biogenic and anthropogenic sources, J. Geophys. Res., 108 ( D8 ), 4247, doi: 10.1029/2002JD002478.
dc.identifier.citedreferenceSteiner, A. L., A. L. Steiner, R. C. Cohen, R. A. Harley, and S. Tonse ( 2008 ), VOC reactivity in central California: Comparing an air quality model to groundâ based measurements, Atmos. Chem. Phys., 8 ( 2 ), 351 â 368, doi: 10.5194/acp-8-351-2008.
dc.identifier.citedreferenceSullivan, P. P., and E. G. Patton ( 2011 ), The effect of mesh resolution on convective boundary layer statistics and structures generated by largeâ eddy simulation, J. Atmos. Sci., 68 ( 10 ), 2395 â 2415, doi: 10.1175/JAS-D-10-05010.1.
dc.identifier.citedreferenceSurratt, J. D., A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld ( 2010 ), Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Natl. Acad. Sci. U.S.A., 107 ( 15 ), 6640 â 6645, doi: 10.1073/pnas.0911114107.
dc.identifier.citedreferenceSykes, R. I., S. F. Parker, D. S. Henn, and W. S. Lewellen ( 1994 ), Turbulent mixing with chemical reaction in the planetary boundary layer, J. Appl. Meteorol., 33 ( 7 ), 825 â 834, doi: 10.1175/1520-0450(1994)033<0825:TMWCRI>2.0.CO;2.
dc.identifier.citedreferencevan der Poel, E. P., R. Ostillaâ Mónico, R. Verzicco, and D. Lohse ( 2014 ), Effect of velocity boundary conditions on the heat transfer and flow topology in twoâ dimensional Rayleighâ B’enard convection, Phys. Rev. E, 90 ( 1 013017).
dc.identifier.citedreferenceVelasco, E., C. Márquez, E. Bueno, R. Bernabé, A. Sánchez, O. Fentanes, H. Wöhrnschimmel, B. Cárdenas, A. Kamilla, and S. Wakamatsu ( 2008 ), Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City, Atmos. Chem. Phys., 8 ( 12 ), 3061 â 3079.
dc.identifier.citedreferenceVerver, G. H. L., H. Van Dop, and A. A. M. Holtslag ( 1997 ), Turbulent mixing of reactive gases in the convective boundary layer, Boundary Layer Meteorol., 85 ( 2 ), 197 â 222, doi: 10.1023/A:1000414710372.
dc.identifier.citedreferenceVilàâ Guerau de Arellano, J., S. W. Kim, M. C. Barth, and E. G. Patton ( 2005 ), Transport and chemical transformations influenced by shallow cumulus over land, Atmos. Chem. Phys., 5 ( 12 ), 3219 â 3231, doi: 10.5194/acp-5-3219-2005.
dc.identifier.citedreferenceVinuesa, J.â F., and J. V.â G. De Arellano ( 2003 ), Fluxes and (coâ )variances of reacting scalars in the convective boundary layer, Tellus, Ser. B, 55 ( 4 ), 935 â 949, doi: 10.1046/j.1435-6935.2003.00073.x.
dc.identifier.citedreferenceVolkamer, R., P. Sheehy, L. T. Molina, and M. J. Molina ( 2010 ), Oxidative capacity of the Mexico City atmosphereâ Part 1: A radical source perspective, Atmos. Chem. Phys., 10 ( 14 ), 6969 â 6991, doi: 10.5194/acp-10-6969-2010.
dc.identifier.citedreferencevon Kuhlmann, R., M. G. Lawrence, P. J. Crutzen, and P. J. Rasch ( 2003 ), A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108 ( D9 ), 4294, doi: 10.1029/2002JD002893.
dc.identifier.citedreferenceWang, M., M. Shao, W. Chen, B. Yuan, S. Lu, Q. Zhang, L. Zeng, and Q. Wang ( 2014 ), A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China, Atmos. Chem. Phys., 14 ( 12 ), 5871 â 5891.
dc.identifier.citedreferenceWeibring, P., D. Richter, J. G. Walega, and A. Fried ( 2007 ), First demonstration of a high performance difference frequency spectrometer on airborne platforms, Opt. Express, 15 ( 21 ), 13,476 â 13,495, doi: 10.1364/OE.15.013476.
dc.identifier.citedreferenceWilliams, J., and R. Koppmann ( 2007 ), Volatile organic compounds in the atmosphere: An overview, in Volatile Organic Compounds in the Atmosphere, edited by R. Koppmann, pp. 1 â 32, Blackwell, Oxford, U. K., doi: 10.1002/9780470988657.ch1.
dc.identifier.citedreferenceWöhrnschimmel, H., C. Márquez, V. Mugica, W. A. Stahel, J. Staehelin, B. Cárdenas, and S. Blanco ( 2006 ), Vertical profiles and receptor modeling of volatile organic compounds over southeastern Mexico City, Atmos. Environ., 40 ( 27 ), 5125 â 5136.
dc.identifier.citedreferenceXie, Y., R. Elleman, T. Jobson, and B. Lamb ( 2011 ), Evaluation of O 3 â NO x â VOC sensitivities predicted with the CMAQ photochemical model using Pacific Northwest 2001 field observations, J. Geophys. Res., 116, D20303, doi: 10.1029/2011JD015801.
dc.identifier.citedreferenceZheng, J., M. Shao, W. Che, L. Zhang, L. Zhong, Y. Zhang, and D. Streets ( 2009 ), Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China, Environ. Sci. Technol., 43 ( 22 ), 8580 â 8586, doi: 10.1021/es901688e.
dc.identifier.citedreferenceAllodi, M. A., K. N. Kirschner, and G. C. Shields ( 2008 ), Thermodynamics of the hydroxyl radical addition to isoprene, J. Phys. Chem. A, 112 ( 30 ), 7064 â 7071.
dc.identifier.citedreferenceAndronache, C., W. L. Chameides, M. O. Rodgers, J. Martinez, P. Zimmerman, and J. Greenberg ( 1994 ), Vertical distribution of isoprene in the lower boundary layer of the rural and urban southern United States, J. Geophys. Res., 99, 16,989 â 16,999, doi: 10.1029/94JD01027.
dc.identifier.citedreferenceApel, E. C., et al. ( 2002 ), Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive, J. Geophys. Res., 107 ( D3 ), 4034, doi: 10.1029/2000JD000225.
dc.identifier.citedreferenceAtkinson, R. ( 2000 ), Atmospheric chemistry of VOCs and NO x, Atmos. Environ., 34 ( 12â 14 ), 2063 â 2101, doi: 10.1016/S1352-2310(99)00460-4.
dc.identifier.citedreferenceBaek, J., Y. Hu, M. T. Odman, and A. G. Russell ( 2011 ), Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semiâ volatile organic compounds, J. Geophys. Res., 116, D22204, doi: 10.1029/2011JD015911.
dc.identifier.citedreferenceBarth, M. C., S. Sillman, R. Hudman, M. Z. Jacobson, C. H. Kim, A. Monod, and J. Liang ( 2003 ), Summary of the cloud chemistry modeling intercomparison: Photochemical box model simulation, J. Geophys. Res., 108 ( D7 ), 4214, doi: 10.1029/2002JD002673.
dc.identifier.citedreferenceBon, D. M., D. M. Bon, I. M. Ulbrich, J. A. De Gouw, and C. Warneke ( 2011 ), Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution, Atmos. Chem. Phys., 11 ( 6 ), 2399 â 2421.
dc.identifier.citedreferenceBorrego, C., and S. Incecik ( 2012 ), Air Pollution Modeling and Its Application XVI, Springer, New York.
dc.identifier.citedreferenceBrown, A. R., et al. ( 2002 ), Largeâ eddy simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. R. Meteorol. Soc., 128 ( 582 ), 1075 â 1093, doi: 10.1256/003590002320373210.
dc.identifier.citedreferenceButler, T. M., D. Taraborrelli, C. Brühl, H. Fischer, H. Harder, M. Martinez, J. Williams, M. G. Lawrence, and J. Lelieveld ( 2008 ), Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistryâ climate model: Lessons from the GABRIEL airborne field campaign, Atmos. Chem. Phys., 8 ( 16 ), 4529 â 4546, doi: 10.5194/acp-8-4529-2008.
dc.identifier.citedreferenceCarter, W. P. ( 2007 ), Development of the SAPRCâ 07 Chemical Mechanism and Updated Ozone Reactivity Scales, Citeseer, Univ. Park.
dc.identifier.citedreferenceCrawford, J. H., and K. E. Pickering ( 2014 ), Highlights from the Air Sensors 2014 Workshop EM: Air and Waste Management Associations Magazine for Environmental Managers, 1â 47, Air & Waste Manage. Assoc., Pittsburgh, Pa.
dc.identifier.citedreferenceDeardorff, J. ( 1980 ), Stratocumulusâ capped mixed layers derived from a threeâ dimensional model, Boundary Layer Meteorol., 18 ( 4 ), 495 â 527, doi: 10.1007/BF00119502.
dc.identifier.citedreferenceDlugi, R., et al. ( 2010 ), Turbulent exchange and segregation of HO x radicals and volatile organic compounds above a deciduous forest, Atmos. Chem. Phys., 10 ( 13 ), 6215 â 6235, doi: 10.5194/acp-10-6215-2010.
dc.identifier.citedreferenceFolletteâ Cook, M. B., K. E. Pickering, J. H. Crawford, B. N. Duncan, C. P. Loughner, G. S. Diskin, A. Fried, and A. J. Weinheimer ( 2015 ), Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output: Planning for geostationary observations of atmospheric composition, Atmos. Environ., 118, 28 â 44.
dc.identifier.citedreferenceForkel, R., O. Klemm, M. Graus, B. Rappenglück, W. R. Stockwell, W. Grabmer, A. Held, A. Hansel, and R. Steinbrecher ( 2006 ), Trace gas exchange and gas phase chemistry in a Norway spruce forest: A study with a coupled 1â dimensional canopy atmospheric chemistry emission model, Atmos. Environ., 40 ( Supplement 1 ), 28 â 42, doi: 10.1016/j.atmosenv.2005.11.070.
dc.identifier.citedreferenceFuchs, H., A. Hofzumahaus, F. Rohrer, B. Bohn, T. Brauers, H. Dorn, R. Häseler, F. Holland, M. Kaminski, and X. Li ( 2013 ), Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation, Nat. Geosci., 6 ( 12 ), 1023 â 1026.
dc.identifier.citedreferenceGianotti, R. L., D. Zhang, and E. A. B. Eltahir ( 2011 ), Assessment of the Regional Climate Model version 3 over the maritime continent using different cumulus parameterization and land surface schemes, J. Clim., 25 ( 2 ), 638 â 656, doi: 10.1175/JCLI-D-11-00025.1.
dc.identifier.citedreferenceGoldstein, A. H., and I. E. Galbally ( 2007 ), Known and unexplored organic constituents in the Earth’s atmosphere, Environ. Sci. Technol., 41 ( 5 ), 1514 â 1521, doi: 10.1021/es072476p.
dc.identifier.citedreferenceGrell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder ( 2005 ), Fully coupled â onlineâ chemistry within the WRF model, Atmos. Environ., 39 ( 37 ), 6957 â 6975, doi: 10.1016/j.atmosenv.2005.04.027.
dc.identifier.citedreferenceGuenther, A., et al. ( 1995 ), A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873 â 8892, doi: 10.1029/94JD02950.
dc.identifier.citedreferenceGuenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron ( 2006 ), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6 ( 11 ), 3181 â 3210, doi: 10.5194/acp-6-3181-2006.
dc.identifier.citedreferenceHatfield, M. L., and K. E. Huff Hartz ( 2011 ), Secondary organic aerosol from biogenic volatile organic compound mixtures, Atmos. Environ., 45 ( 13 ), 2211 â 2219, doi: 10.1016/j.atmosenv.2011.01.065.
dc.identifier.citedreferenceHorowitz, L. W., et al. ( 2003 ), A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108 ( D24 ), 4784, doi: 10.1029/2002JD002853.
dc.identifier.citedreferenceKarl, T., A. Guenther, R. J. Yokelson, J. Greenberg, M. Potosnak, D. R. Blake, and P. Artaxo ( 2007 ), The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, J. Geophys. Res., 112, D18302, doi: 10.1029/2007JD008539.
dc.identifier.citedreferenceKarl, T., A. Guenther, A. Turnipseed, G. Tyndall, P. Artaxo, and S. Martin ( 2009 ), Rapid formation of isoprene photoâ oxidation products observed in Amazonia, Atmos. Chem. Phys., 9 ( 20 ), 7753 â 7767.
dc.identifier.citedreferenceKaser, L., et al. ( 2015 ), Chemistryâ turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere, Geophys. Res. Lett,, 42, 10,894 â 10,903, doi: 10.1002/2015GL066641.
dc.identifier.citedreferenceKim, S. W., M. C. Barth, and M. Trainer ( 2012 ), Influence of fairâ weather cumulus clouds on isoprene chemistry, J. Geophys. Res., 117, D10302, doi: 10.1029/2011JD017099.
dc.identifier.citedreferenceKleindienst, T. E., G. W. Harris, and J. N. Pitts ( 1982 ), Rates and temperature dependences of the reaction of hydroxyl radical with isoprene, its oxidation products, and selected terpenes, Environ. Sci. Technol., 16 ( 12 ), 844 â 846, doi: 10.1021/es00106a004.
dc.identifier.citedreferenceKoà mann, M., H. Vogel, B. Vogel, R. Vögtlin, U. Corsmeier, F. Fiedler, O. Klemm, and H. Schlager ( 1996 ), The composition and vertical distribution of volatile organic compounds in southwestern Germany, eastern France and northern Switzerland during the TRACT campaign in September 1992, Phys. Chem. Earth, 21 ( 5â 6 ), 429 â 433, doi: 10.1016/S0079-1946(97)81137-8.
dc.identifier.citedreferenceKrol, M. C., M. J. Molemaker, and J. V. G. de Arellano ( 2000 ), Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer, J. Geophys. Res., 105, 6871 â 6884, doi: 10.1029/1999JD900958.
dc.identifier.citedreferenceLei, W., M. Zavala, B. De Foy, and R. Volkamer ( 2009 ), Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 9 ( 7 ), 2607 â 2618.
dc.identifier.citedreferenceLelieveld, J., et al. ( 2008 ), Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452 ( 7188 ), 737 â 740.
dc.identifier.citedreferenceLi, Y., M. Shao, S. Lu, C.â C. Chang, and P. K. Dasgupta ( 2010 ), Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games, Atmos. Environ., 44 ( 21â 22 ), 2632 â 2639, doi: 10.1016/j.atmosenv.2010.03.045.
dc.identifier.citedreferenceLindinger, W., and A. Jordan ( 1998 ), Protonâ transferâ reaction mass spectrometry (PTRâ MS): Onâ line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev., 27 ( 5 ), 347 â 375, doi: 10.1039/A827347Z.
dc.identifier.citedreferenceMadronich, S., and S. Flocke ( 1999 ), The role of solar radiation in atmospheric chemistry, in Environmental Photochemistry, edited by P. Boule, pp. 1 â 26, Springer, Berlin, doi: 10.1007/978-3-540-69044-3_1.
dc.identifier.citedreferenceMao, J., et al. ( 2009 ), Airborne measurement of OH reactivity during INTEXâ B, Atmos. Chem. Phys., 9 ( 1 ), 163 â 173, doi: 10.5194/acp-9-163-2009.
dc.identifier.citedreferenceMapes, B. E., T. T. Warner, M. Xu, and D. J. Gochis ( 2004 ), Comparison of cumulus parameterizations and entrainment using domainâ mean wind divergence in a regional model, J. Atmos. Sci., 61 ( 11 ), 1284 â 1295, doi: 10.1175/1520-0469(2004)061<1284:COCPAE>2.0.CO;2.
dc.identifier.citedreferenceMartin, R. V., D. D. Parrish, T. B. Ryerson, D. K. Nicks, K. Chance, T. P. Kurosu, D. J. Jacob, E. D. Sturges, A. Fried, and B. P. Wert ( 2004 ), Evaluation of GOME satellite measurements of tropospheric NO 2 and HCHO using regional data from aircraft campaigns in the southeastern United States, J. Geophys. Res., 109, D24307, doi: 10.1029/2004JD004869.
dc.identifier.citedreferenceMauritsen, T., B. Stevens, E. Roeckner, T. Crueger, M. Esch, M. Giorgetta, H. Haak, J. Jungclaus, D. Klocke, and D. Matei ( 2012 ), Tuning the climate of a global model, J. Adv. Model. Earth Syst., 4, M00A01, doi: 10.1029/2012MS000154.
dc.identifier.citedreferenceMellouki, A., T. J. Wallington, and J. Chen ( 2015 ), Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate, Chem. Rev., 115 ( 10 ), 3984 â 4014, doi: 10.1021/cr500549n.
dc.identifier.citedreferenceMoeng, C.â H. ( 1984 ), A largeâ eddyâ simulation model for the study of planetary boundaryâ layer turbulence, J. Atmos. Sci., 41 ( 13 ), 2052 â 2062.
dc.identifier.citedreferenceMolemaker, M. J., and J. Vilàâ Guerau de Arellano ( 1998 ), Control of chemical reactions by convective turbulence in the boundary layer, J. Atmos. Sci., 55 ( 4 ), 568 â 579, doi: 10.1175/1520-0469(1998)055<0568:COCRBC>2.0.CO;2.
dc.identifier.citedreferenceOuwersloot, H. G., J. Vilàâ Guerau de Arellano, C. C. van Heerwaarden, L. N. Ganzeveld, M. C. Krol, and J. Lelieveld ( 2011 ), On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces, Atmos. Chem. Phys., 11 ( 20 ), 10,681 â 10,704, doi: 10.5194/acp-11-10681-2011.
dc.identifier.citedreferencePatton, E., K. Davis, M. Barth, and P. Sullivan ( 2001 ), Decaying scalars emitted by a forest canopy: A numerical study, Boundary Layer Meteorol., 100 ( 1 ), 91 â 129, doi: 10.1023/A:1019223515444.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.