Show simple item record

Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN

dc.contributor.authorMao, Miaohua
dc.contributor.authorVan Der Westhuysen, André J.
dc.contributor.authorXia, Meng
dc.contributor.authorSchwab, David J.
dc.contributor.authorChawla, Arun
dc.date.accessioned2016-09-17T23:54:59Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationMao, Miaohua; Van Der Westhuysen, André J. ; Xia, Meng; Schwab, David J.; Chawla, Arun (2016). "Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN." Journal of Geophysical Research: Oceans 121(6): 3836-3865.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/133611
dc.description.abstractAccurate wind‐wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured‐grid models have the ability to capture the wave dynamics of large‐scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow‐water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured‐grid version of Simulating Waves Nearshore (un‐SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth‐induced breaking, and (4) various mesh types. We find that un‐SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth‐induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow‐water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth‐induced breaking is dominant and highly dependent upon breaker indices and mesh types.Key PointsImpacts of three different wind field sources on lake wave dynamics are examinedModifications to wind input and whitecapping formulations are critical to deepwater wave dynamicsDepth‐induced wave breaking and the choice of mesh type dominate modeled shallow‐water wave dynamics
dc.publisherAm. Soc. Civ. Eng
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwhitecapping
dc.subject.otherdepth‐induced breaking
dc.subject.otherunstructured‐grid SWAN
dc.subject.otherLake Michigan
dc.subject.otherwind input
dc.titleModeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133611/1/jgrc21745.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133611/2/jgrc21745_am.pdf
dc.identifier.doi10.1002/2015JC011340
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRuessink, B. G., D. J. R. Walstra, and H. N. Southgate ( 2003 ), Calibration and verification of a parametric wave model on barred beaches, Coastal Eng., 48 ( 3 ), 139 – 149.
dc.identifier.citedreferenceNelson, R. C. ( 1987 ), Design wave heights on very mild slopes‐an experimental study, Civ. Eng. Trans. Inst. Eng. Aust., 29 ( 3 ), 157 – 161.
dc.identifier.citedreferenceOey, L.‐Y., T. Ezer, D. P. Wang, S. J. Fan, and X. Q. Yin ( 2006 ), Loop current warming by Hurricane Wilma, Geophys. Res. Lett., 33, L08613, doi: 10.1029/2006GL025873.
dc.identifier.citedreferencePierson, W. J., and L. Moskowitz ( 1964 ), A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69 ( 24 ), 5181 – 5190.
dc.identifier.citedreferencePowell, M. D., P. J. Vickery, and T. A. Reinhold ( 2003 ), Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422 ( 6929 ), 279 – 283.
dc.identifier.citedreferenceRogers, W. E., P. A. Hwang, and D. W. Wang ( 2003 ), Investigation of wave growth and decay in the SWAN model: Three regional‐scale applications, J. Phys. Oceanogr., 33 ( 2 ), 366 – 389.
dc.identifier.citedreferenceRogers, W. E., J. M. Kaihatu, L. Hsu, R. E. Jensen, J. D. Dykes, and K. T. Holland ( 2007 ), Forecasting and hindcasting waves with the SWAN model in the Southern California Bight, Coastal Eng., 54 ( 1 ), 1 – 15.
dc.identifier.citedreferenceRogers, W. E., A. V. Babanin, and D. W. Wang ( 2012 ), Observation‐consistent input and whitecapping dissipation in a model for wind‐generated surface waves: Description and simple calculations, J. Atmos. Oceanic Technol., 29 ( 9 ), 1329 – 1346.
dc.identifier.citedreferenceSaha, S., et al. ( 2014 ), The NCEP climate forecast system version 2, J. Clim., 27 ( 6 ), 2185 – 2208.
dc.identifier.citedreferenceSalmon, J. E., L. H. Holthuijsen, M. Zijlema, G. P. van Vledder, and J. D. Pietrzak ( 2015 ), Scaling depth‐induced wave‐breaking in two‐dimensional spectral wave models, Ocean Modell., 87, 30 – 47.
dc.identifier.citedreferenceSchwab, D. J., and J. A. Morton ( 1984 ), Estimation of overlake wind speed from overland wind speed: A comparison of three methods, J. Great Lakes Res., 10 ( 1 ), 68 – 72.
dc.identifier.citedreferenceSchwab, D. J., D. Beletsky, and J. Lou ( 2000 ), The 1998 coastal turbidity plume in Lake Michigan, Estuarine Coastal Shelf Sci., 50 ( 1 ), 49 – 58.
dc.identifier.citedreferenceSellinger, C. E., C. A. Stow, E. C. Lamon, and S. S. Qian ( 2007 ), Recent water level declines in the Lake Michigan−Huron System, Environ. Sci. Technol., 42 ( 2 ), 367 – 373.
dc.identifier.citedreferenceSnyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long ( 1981 ), Array measurements of atmospheric pressure fluctuations above surface gravity waves, J. Fluid Mech., 102, 1 – 59.
dc.identifier.citedreferenceSWAN Group ( 2012a ), SWAN Scientific and Technical Documentation—SWAN Cycle III Version 40.91, chap. 3, pp. 43–51, Delft Univ. of Technol., Delft, Netherlands. [Available at http://www.swan.tudelft.nl/.]
dc.identifier.citedreferenceSWAN Group ( 2012b ), SWAN User Manual‐SWAN Cycle III Version 40.91, chap. 4, pp. 55–56, Delft Univ. of Technol., Delft, Netherlands. [Available at http://www.swan.tudelft.nl/.]
dc.identifier.citedreferenceTaylor, K. E. ( 2001 ), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106 ( D7 ), 7183 – 7192.
dc.identifier.citedreferenceThornton, E. B., and R. T. Guza ( 1983 ), Transformation of wave height distribution, J. Geophys. Res., 88 ( C10 ), 5925 – 5938.
dc.identifier.citedreferenceTolman, H. L. ( 2002 ), User Manual and System Documentation of WAVEWATCH III Version 2.22, Environ. Model. Cent., Mar. Model. and Anal. Brach, NOAA.
dc.identifier.citedreferenceVan der Westhuysen, A. J. ( 2010 ), Modeling of depth‐induced wave breaking under finite depth wave growth conditions, J. Geophys. Res., 115, C01008, doi: 10.1029/2009JC005433.
dc.identifier.citedreferenceVan der Westhuysen, A. J. ( 2012 ), Spectral modeling of wave dissipation on negative current gradients. Coastal Eng., 68, 17 – 30.
dc.identifier.citedreferenceVan der Westhuysen, A. J., M. Zijlema, and J. A. Battjes ( 2007 ), Nonlinear saturation‐based whitecapping dissipation in SWAN for deep and shallow water, Coastal Eng., 54 ( 2 ), 151 – 170.
dc.identifier.citedreferenceVan der Westhuysen, A. J., A. R. Dongeren, J. Groeneweg, G. P. van Vledder, H. Peters, C. Gautier, and J. C. C. Nieuwkoop ( 2012 ), Improvements in spectral wave modeling in tidal inlet seas, J. Geophys. Res., 117, C00J28, doi: 10.1029/2011JC007837.
dc.identifier.citedreferenceWu, J. ( 1982 ), Wind‐stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res., 87 ( C12 ), 9704 – 9706.
dc.identifier.citedreferenceYan, L. ( 1987 ), An improved wind input source term for third generation ocean wave modeling, Rep. 87–8, R. Dutch Meteorol. Inst.
dc.identifier.citedreferenceZijlema, M. ( 2010 ), Computation of wind‐wave spectra in coastal waters with SWAN on unstructured grids, Coastal Eng., 57 ( 3 ), 267 – 277.
dc.identifier.citedreferenceBattjes, J. A., and J. P. F. M. Janssen ( 1978 ), Energy loss and set‐up due to breaking of random waves, in Coastal Engineering, pp. 569 – 588, Am. Soc. Civ. Eng., N. Y.
dc.identifier.citedreferenceAlves, J. H. G., A. Chawla, H. L. Tolman, D. J. Schwab, G. Lang, and G. Mann ( 2014 ), The operational implementation of a great lakes wave forecasting system at NOAA/NCEP, Weather Forecast., 29 ( 6 ), 1473 – 1497.
dc.identifier.citedreferenceBeletsky, D., and D. J. Schwab ( 2001 ), Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability, J. Geophys. Res., 106 ( C9 ), 19,745 – 19,771.
dc.identifier.citedreferenceBeletsky, D., and D. J. Schwab ( 2008 ), Climatological circulation in Lake Michigan, Geophys. Res. Lett., 35, L21604, doi: 10.1029/2008GL035773.
dc.identifier.citedreferenceBenetazzo, A., S. Carniel, M. Sclavo, and A. Bergamasco ( 2013 ), Wave–current interaction: Effect on the wave field in a semi‐enclosed basin, Ocean Modell., 70, 152 – 165.
dc.identifier.citedreferenceBooij, N., R. C. Ris, and L. H. Holthuijsen ( 1999 ), A third‐generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104 ( C4 ), 7649 – 7666.
dc.identifier.citedreferenceBreugem, W. A., and L. H. Holthuijsen ( 2007 ), Generalized shallow water wave growth from Lake George, J. Waterw. Port Coastal Ocean Eng., 133 ( 3 ), 173 – 182.
dc.identifier.citedreferenceCavaleri, L. ( 2009 ), Wave modeling—Missing the peaks, J. Phys. Oceanogr., 39 ( 11 ), 2757 – 2778.
dc.identifier.citedreferenceChen, C., L. Wang, R. Ji, J. W. Budd, D. J. Schwab, D. Beletsky, G. L. Fahnenstiel, H. Vanderploeg, B. Eadie, and J. Cotner ( 2004 ), Impacts of suspended sediment on the ecosystem in Lake Michigan: A comparison between the 1998 and 1999 plume events, J. Geophys. Res., 109, C10S05, doi: 10.1029/2002JC001687.
dc.identifier.citedreferenceCollins, J. I. ( 1972 ), Prediction of shallow‐water spectra, J. Geophys. Res., 77 ( 15 ), 2693 – 2707.
dc.identifier.citedreferenceCôté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth ( 1998 ), The operational CMC‐MRB Global Environmental Multiscale (GEM) Model. Part I: Design considerations and formulation, Mon. Weather Rev., 126 ( 6 ), 1373 – 1395.
dc.identifier.citedreferenceDietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich Jr., R. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone ( 2011 ), Modelling hurricane waves and storm surge using integrally‐coupled, scalable computations, Coastal Eng., 58, 45 – 65.
dc.identifier.citedreferenceDietrich, J. C., et al. ( 2013 ), Limiters for spectral propagation velocities in SWAN, Ocean Modell., 70, 85 – 102.
dc.identifier.citedreferenceDodet, G., X. Bertin, N. Bruneau, A. B. Fortunato, A. Nahon, and A. Roland ( 2013 ), Wave–current interactions in a wave‐dominated tidal inlet, J. Geophys. Res. Oceans, 118, 1587 – 1605, doi: 10.1002/jgrc.20146.
dc.identifier.citedreferenceDonelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner ( 2006 ), Wave‐follower field measurements of the wind‐input spectral function. Part II: Parameterization of the wind input, J. Phys. Oceanogr., 36 ( 8 ), 1672 – 1689.
dc.identifier.citedreferenceGelci, R., and H. Cazalé ( 1953 ), Une théorie énergétique de la houle appliquée au Maroc, C. R. Soc. Sci. Nat. Phys. Maroc., 4, 64 – 66.
dc.identifier.citedreferenceGronewold, A. D., and C. A. Stow ( 2014 ), Water loss from the Great Lakes, Science, 343 ( 6175 ), 1084 – 1085.
dc.identifier.citedreferenceHasselmann, K. ( 1974 ), On the spectral dissipation of ocean waves due to white capping, Boundary Layer Meteorol., 6 ( 1–2 ), 107 – 127.
dc.identifier.citedreferenceHasselmann, K., et al. ( 1973 ), Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z., A12, 95.
dc.identifier.citedreferenceHe, R., Y. Liu, and R. H. Weisberg ( 2004 ), Coastal ocean wind fields gauged against the performance of an ocean circulation model, Geophys. Res. Lett., 31, L14303, doi: 10.1029/2003GL019261.
dc.identifier.citedreferenceHuang, Y., R. H. Weisberg, L. Zheng, and M. Zijlema ( 2013 ), Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula‐based drag coefficient sensitivity for Hurricane Ike, J. Geophys. Res., 118, 3916 – 3938, doi: 10.1002/jgrc.20283.
dc.identifier.citedreferenceJanssen, P. A. E. M. ( 1991 ), Quasi‐linear theory of wind‐wave generation applied to wave forecasting, J. Phys. Oceanogr., 21 ( 11 ), 1631 – 1642.
dc.identifier.citedreferenceJanssen, P. A. E. M. ( 1992 ), Consequences of the effect of surface gravity waves on the mean air flow, in Breaking Waves: IVTAM Symposium, edited by M. L. Banner and R. H. J. Grimshaw, pp. 193 – 198, Springer.
dc.identifier.citedreferenceJensen, R. E., M. A. Cialone, R. S. Chapman, B. A. Ebersole, M. Anderson, and L. Thomas ( 2012 ), Lake Michigan storm: Wave and water level modeling, Rep. ERDC/CHL‐TR‐12‐26, U.S. Army Eng. Res. and Dev. Cent. Coastal and Hydraul. Lab., Vicksburg, Miss.
dc.identifier.citedreferenceKerr, P. C., R. C. Martyr, A. S. Donahue, M. E. Hope, J. J. Westerink, R. A. Luettich, and H. J. Westerink ( 2013 ), U.S. IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico, J. Geophys. Res., 118, 4633 – 4661, doi: 10.1002/jgrc.20305.
dc.identifier.citedreferenceKomen, G. J., S. Hasselmann, and K. Hasselmann ( 1984 ), On the existence of a fully developed wind‐sea spectrum, J. Phys. Oceanogr., 14 ( 8 ), 1271 – 1285.
dc.identifier.citedreferenceLang, G. A., and G. A. Leshkevich ( 2014 ), Persistent wind fields over the Great Lakes, 2002‐2013, paper presented at 57th Annual Conference on Great Lakes Research, McMaster Univ., Hamilton, Ontario, Canada, 26–30 May.
dc.identifier.citedreferenceLarge, W. G., and S. Pond ( 1981 ), Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11 ( 3 ), 324 – 336.
dc.identifier.citedreferenceLou, J., D. J. Schwab, D. Beletsky, and N. Hawley ( 2000 ), A model of sediment resuspension and transport dynamics in southern Lake Michigan, J. Geophys. Res., 105 ( C3 ), 6591 – 6610.
dc.identifier.citedreferenceMadsen, O. S., Y. K. Poon, and H. C. Graber ( 1988 ), Spectral wave attenuation by bottom friction: Theory, in Proceedings of the 21th International Conference on Coastal Engineering, pp. 492–504, Am. Soc. of Civ. Eng., Reston, Va.
dc.identifier.citedreferenceMassey, T. C., M. E. Anderson, J. M. Smith, J. Gomez, and R. Jones ( 2011 ), STWAVE: Steady‐State Spectral Wave Model User’s Manual for STWAVE, Version 6.0. ERDC/CHL SR‐11‐1, U.S. Army Eng. Res. and Dev. Cent., Vicksburg, Miss.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.