Show simple item record

Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid

dc.contributor.authorWebster, Tara M.
dc.contributor.authorSmith, Adam L.
dc.contributor.authorReddy, Raghav R.
dc.contributor.authorPinto, Ameet J.
dc.contributor.authorHayes, Kim F.
dc.contributor.authorRaskin, Lutgarde
dc.date.accessioned2016-10-17T21:17:42Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationWebster, Tara M.; Smith, Adam L.; Reddy, Raghav R.; Pinto, Ameet J.; Hayes, Kim F.; Raskin, Lutgarde (2016). "Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid." MicrobiologyOpen 5(4): 537-550.
dc.identifier.issn2045-8827
dc.identifier.issn2045-8827
dc.identifier.urihttps://hdl.handle.net/2027.42/134127
dc.description.abstractMethanogenic inhibitors are often used to study methanogenesis in complex microbial communities or inhibit methanogens in the gastrointestinal tract of livestock. However, the resulting structural and functional changes in archaeal and bacterial communities are poorly understood. We characterized microbial community structure and activity in mesocosms seeded with cow dung and municipal wastewater treatment plant anaerobic digester sludge after exposure to two methanogenic inhibitors, 2‐bromoethanesulfonate (BES) and propynoic acid (PA). Methane production was reduced by 89% (0.5 mmol/L BES), 100% (10 mmol/LBES), 24% (0.1 mmol/LPA), and 95% (10 mmol/LPA). Using modified primers targeting the methyl‐coenzyme M reductase (mcrA) gene, changes in mcrA gene expression were found to correspond with changes in methane production and the relative activity of methanogens. Methanogenic activity was determined by the relative abundance of methanogen 16S rRNA cDNA as a percentage of the total community 16S rRNA cDNA. Overall, methanogenic activity was lower when mesocosms were exposed to higher concentrations of both inhibitors, and aceticlastic methanogens were inhibited to a greater extent than hydrogenotrophic methanogens. Syntrophic bacterial activity, measured by 16S rRNA cDNA, was also reduced following exposure to both inhibitors, but the overall structure of the active bacterial community was not significantly affected.This manuscript reports a comprehensive approach to characterizing the effects of commonly used methanogenesis inhibitors on an anaerobic microbial community. We use mock and environmental communities and target two genes using DNA‐ and RNA‐based methods. Results from Illumina sequencing of the 16S rRNA gene, 16S rRNA cDNA, mcrA gene, and mcrA transcript cDNA highlight shifts in both methanogenic archaeal activity and syntrophic bacterial activity.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.other16S rRNA
dc.subject.othermcrA
dc.subject.other2‐bromoethanesulfonate
dc.subject.otherpropynoic acid.
dc.subject.othermethanogenic inhibitors
dc.titleAnaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134127/1/mbo3349.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134127/2/mbo3349_am.pdf
dc.identifier.doi10.1002/mbo3.349
dc.identifier.sourceMicrobiologyOpen
dc.identifier.citedreferenceSprott, G. D., K. F. Jarrell, K. M. Shaw, and R. Knowles. 1982. Acetylene as an inhibitor of methanogenic bacteria. J. Gen. Microbiol. 128: 2453 – 2462.
dc.identifier.citedreferenceSteinberg, L. M., and J. M. Regan. 2008. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74: 6663 – 6671.
dc.identifier.citedreferenceSteinberg, L. M., and J. M. Regan. 2009. mcrA ‐targeted real‐time quantitative pcr method to examine methanogen communities. Appl. Environ. Microbiol. 75: 4435 – 4442.
dc.identifier.citedreferenceSugimoto, A., and E. Wada. 1993. Carbon isotopic composition of bacterial methane in a soil incubation experiment: Contributions of acetate and CO2H2. Geochim. Cosmochim. Acta 57: 4015 – 4027.
dc.identifier.citedreferenceSun, J., S. Hu, K. R. Sharma, B.‐J. Ni, and Z. Yuan. 2015. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Water Res. 69: 80 – 89.
dc.identifier.citedreferenceSuzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625 – 630.
dc.identifier.citedreferenceTamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725 – 2729.
dc.identifier.citedreferenceTezel, U., L. P. Padhye, C.‐H. Huang, and S. G. Pavlostathis. 2011. Biotransformation of nitrosamines and precursor secondary amines under methanogenic conditions. Environ. Sci. Technol. 45: 8290 – 8297.
dc.identifier.citedreferenceThomas, F., R. A. Diaz‐Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz, et al. 2011. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis. Appl. Environ. Microbiol. 77: 8669 – 8675.
dc.identifier.citedreferenceUngerfeld, E. M., S. R. Rust, and R. Burnett. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43: 189 – 202.
dc.identifier.citedreferenceUngerfeld, E. M., S. R. Rust, D. R. Boone, and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens*. J. Appl. Microbiol. 97: 520 – 526.
dc.identifier.citedreferenceUngerfeld, E. M., S. R. Rust, and R. Burnett. 2006. Effects of butyrate precursors on electron relocation when methanogenesis is inhibited in ruminal mixed cultures. Lett. Appl. Microbiol. 42: 567 – 572.
dc.identifier.citedreferenceWatkins, A. J., E. G. Roussel, G. Webster, R. J. Parkes, and H. Sass. 2012. Choline and N, N‐Dimethylethanolamine as direct substrates for methanogens. Appl. Environ. Microbiol. 78: 8298 – 8303.
dc.identifier.citedreferenceWilkins, D., X.‐Y. Lu, Z. Shen, J. Chen, and P. K. H. Lee. 2015. Pyrosequencing of mcrA and archaeal 16s rrna genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl. Environ. Microbiol. 81: 604 – 613.
dc.identifier.citedreferenceWilliams, A. G., S. Withers, and A. D. Sutherland. 2013. The potential of bacteria isolated from ruminal contents of seaweed‐eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro. Microb. Biotechnol. 6: 45 – 52.
dc.identifier.citedreferenceWu, X. L., K. J. Chin, S. Stubner, and R. Conrad. 2001. Functional patterns and temperature response of cellulose‐fermenting microbial cultures containing different methanogenic communities. Appl. Microbiol. Biotechnol. 56: 212 – 219.
dc.identifier.citedreferenceXu, K., H. Liu, and J. Chen. 2010a. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour. Technol. 101: 2600 – 2607.
dc.identifier.citedreferenceXu, K., H. Liu, X. Li, J. Chen, and A. Wang. 2010b. Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl. Microbiol. Biotechnol. 87: 2267 – 2279.
dc.identifier.citedreferenceYang, S., S. Liebner, M. Alawi, O. Ebenhöh, and D. Wagner. 2014. Taxonomic database and cut‐off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J. Microbiol. Methods 103: 3 – 5.
dc.identifier.citedreferenceYue, Z.‐B., W.‐W. Li, and H.‐Q. Yu. 2013. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresour. Technol. 128: 738 – 744.
dc.identifier.citedreferenceZeleke, J., S.‐L. Lu, J.‐G. Wang, J.‐X. Huang, B. Li, A. Ogram, et al. 2013. Methyl Coenzyme M Reductase A ( mcrA ) gene‐based investigation of methanogens in the mudflat sediments of Yangtze River Estuary, China. Microb. Ecol. 66: 257 – 267.
dc.identifier.citedreferenceZhang, F., J. Ding, Y. Zhang, M. Chen, Z.‐W. Ding, M. C. M. Van Loosdrecht, et al. 2013. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res. 47: 6122 – 6129.
dc.identifier.citedreferenceZhou, J., L. Wu, Y. Deng, X. Zhi, Y.‐H. Jiang, Q. Tu, et al. 2011a. Reproducibility and quantitation of amplicon sequencing‐based detection. ISME J. 5: 1303 – 1313.
dc.identifier.citedreferenceZhou, Z., Q. Meng, and Z. Yu. 2011b. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77: 2634 – 2639.
dc.identifier.citedreferenceZinder, S. H., T. Anguish, and S. C. Cardwell. 1984. Selective inhibition by 2‐bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47: 1343 – 1345.
dc.identifier.citedreferenceAppels, L., J. Lauwers, J. Degrève, L. Helsen, B. Lievens, K. Willems, et al. 2011. Anaerobic digestion in global bio‐energy production: potential and research challenges. Renew. Sustain. Energy Rev. 15: 4295 – 4301.
dc.identifier.citedreferenceAvramescu, M.‐L., E. Yumvihoze, H. Hintelmann, J. Ridal, D. Fortin, and D. R. S. Lean. 2011. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. Sci. Total Environ. 409: 968 – 978.
dc.identifier.citedreferenceBeauchemin, K. A., S. M. Mcginn, C. Benchaar, and L. Holtshausen. 2009. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 92: 2118 – 2127.
dc.identifier.citedreferenceBlazewicz, S. J., R. L. Barnard, R. A. Daly, and M. K. Firestone. 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7: 2061 – 2068.
dc.identifier.citedreferenceBoadi, D., C. Benchaar, J. Chiquette, and D. Massé. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84: 319 – 335.
dc.identifier.citedreferenceBonacker, L. G., S. Baudner, and R. K. Thauer. 1992. Differential expression of the two methyl‐coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme‐specific antisera. Eur. J. Biochem. 206: 87 – 92.
dc.identifier.citedreferenceBoyd, J. M., A. Ellsworth, and S. A. Ensign. 2006. Characterization of 2‐Bromoethanesulfonate as a selective inhibitor of the coenzyme M‐dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. J. Bacteriol. 188: 8062 – 8069.
dc.identifier.citedreferenceCaporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg‐Lyons, C. A. Lozupone, P. J. Turnbaugh, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. 108: 4516 – 4522.
dc.identifier.citedreferenceChiao, T.‐H., T. M. Clancy, A. J. Pinto, C. Xi, and L. Raskin. 2014. Differential resistance of drinking water bacterial populations to monochloramine disinfection. Environ. Sci. Technol. 48: 4038 – 4047.
dc.identifier.citedreferenceChiu, P. C., and M. Lee. 2001. 2‐Bromoethanesulfonate Affects Bacteria in a Trichloroethene‐Dechlorinating Culture. Appl. Environ. Microbiol. 67: 2371 – 2374.
dc.identifier.citedreferenceChowdhury, T. R., and R. P. Dick. 2013. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 65: 8 – 22.
dc.identifier.citedreferenceCole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. Mcgarrell, Y. Sun, et al. 2013. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42: D633–D642.
dc.identifier.citedreferenceCollins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez‐Garayzabal, P. Garcia, et al. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44: 812 – 826.
dc.identifier.citedreferenceConrad, R. 2007. Microbial ecology of methanogens and methanotrophs. Adv. Agron. L. S. Donald, Academic Press 96: 1 – 63.
dc.identifier.citedreferenceDenman, S. E., N. W. Tomkins, and C. S. Mcsweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62: 313 – 322.
dc.identifier.citedreferenceDufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345 – 366.
dc.identifier.citedreferenceDumitru, R., H. Palencia, S. D. Schroeder, B. A. Demontigny, J. M. Takacs, M. E. Rasche, et al. 2003. Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl. Environ. Microbiol. 69: 7236 – 7241.
dc.identifier.citedreferenceDupont, L., and A. Accorsi. 2006. Explosion characteristics of synthesised biogas at various temperatures. J. Hazard. Mater. 136: 520 – 525.
dc.identifier.citedreferenceDziewit, L., A. Pyzik, K. Romaniuk, A. Sobczak, P. Szczesny, L. Lipinski, et al. 2015. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front. Microbiol. 6: 694.
dc.identifier.citedreferenceFricke, W. F., H. Seedorf, A. Henne, M. Krüer, H. Liesegang, R. Hedderich, et al. 2006. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and h2 for methane formation and atp synthesis. J. Bacteriol. 188: 642 – 658.
dc.identifier.citedreferenceGunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of methanobacterium thermoautotrophicum. Biochemistry 17: 2374 – 2377.
dc.identifier.citedreferenceHallam, S. J., P. R. Girguis, C. M. Preston, P. M. Richardson, and E. F. Delong. 2003. Identification of methyl coenzyme m reductase a ( mcrA ) genes associated with methane‐oxidizing archaea. Appl. Environ. Microbiol. 69: 5483 – 5491.
dc.identifier.citedreferenceHan, S., P. Narasingarao, A. Obraztsova, J. Gieskes, A. C. Hartmann, B. M. Tebo, et al. 2010. Mercury speciation in marine sediments under sulfate‐limited conditions. Environ. Sci. Technol. 44: 3752 – 3757.
dc.identifier.citedreferenceHe, S., and K. D. Mcmahon. 2011. ‘Candidatus Accumulibacter’ gene expression in response to dynamic EBPR conditions. ISME J. 5: 329 – 340.
dc.identifier.citedreferenceIpcc. 2013. Climate change 2013 the physical science basis: working group i contribution to the fifth assessment report of the intergovernmental panel on climate change. T. F. Stocker, D. Qin, G.‐K. Plattner et al.,eds. Cambridge University Press, NY, USA.
dc.identifier.citedreferenceJung, K., W. Kim, G. Park, C. Seo, H. Chang, and Y.‐C. Kim. 2015. Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities. Appl. Microbiol. Biotechnol. 99: 3327 – 3337.
dc.identifier.citedreferenceJuottonen, H., P. E. Galand, and K. Yrjälä. 2006. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res. Microbiol. 157: 914 – 921.
dc.identifier.citedreferenceKarl, D. M., L. Beversdorf, K. M. Bjorkman, M. J. Church, A. Martinez, and E. F. Delong. 2008. Aerobic production of methane in the sea. Nature Geosci. 1: 473 – 478.
dc.identifier.citedreferenceKennedy, K., M. W. Hall, M. D. J. Lynch, G. Moreno‐Hagelsieb, and J. D. Neufeld. 2014. Evaluating bias of Illumina‐based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80: 5717–5722.
dc.identifier.citedreferenceKlappenbach, J. A., J. M. Dunbar, and T. M. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66: 1328 – 1333.
dc.identifier.citedreferenceKlindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, et al. 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next‐generation sequencing‐based diversity studies. Nucleic Acids Res. 41: e1.
dc.identifier.citedreferenceKnittel, K., and A. Boetius. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63: 311 – 334.
dc.identifier.citedreferenceKozich, J. J., S. L. Westcott, N. T. Baxter, S. K. Highlander, and P. D. Schloss. 2013. Development of a dual‐index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112 – 5120.
dc.identifier.citedreferenceLi, J., J. Rui, Z. Pei, X. Sun, S. Zhang, Z. Yan, et al. 2014. Straw‐ and slurry‐associated prokaryotic communities differ during co‐fermentation of straw and swine manure. Appl. Microbiol. Biotechnol. 98: 4771 – 4780.
dc.identifier.citedreferenceLins, P., C. Reitschuler, and P. Illmer. 2015. Impact of several antibiotics and 2‐bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion. Bioresour. Technol. 190: 148 – 158.
dc.identifier.citedreferenceLiu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Drake, and D. R. Boone. 1999. Characterization of the anaerobic propionate‐degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49: 545 – 556.
dc.identifier.citedreferenceLiu, H., J. Wang, A. Wang, and J. Chen. 2011. Chemical inhibitors of methanogenesis and putative applications. Appl. Microbiol. Biotechnol. 89: 1333 – 1340.
dc.identifier.citedreferenceLoffler, F. E., K. M. Ritalahti, and J. M. Tiedje. 1997. Dechlorination of chloroethenes is inhibited by 2‐bromoethanesulfonate in the absence of methanogens. Appl. Environ. Microbiol. 63: 4982 – 4985.
dc.identifier.citedreferenceLueders, T., and M. W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small‐subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil dna extracts. Appl. Environ. Microbiol. 69: 320 – 326.
dc.identifier.citedreferenceLuton, P. E., J. M. Wayne, R. J. Sharp, and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521 – 3530.
dc.identifier.citedreferenceMachmüller, A., and M. Kreuzer. 1999. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can. J. Anim. Sci. 79: 65 – 72.
dc.identifier.citedreferenceMeyer, J., K. Michalke, T. Kouril, and R. Hensel. 2008. Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst. Appl. Microbiol. 31: 81 – 87.
dc.identifier.citedreferenceMorris, R., A. Schauer‐Gimenez, U. Bhattad, C. Kearney, C. A. Struble, D. Zitomer, et al. 2014. Methyl coenzyme M reductase ( mcrA ) gene abundance correlates with activity measurements of methanogenic H2/CO2‐enriched anaerobic biomass. Microb. Biotechnol. 7: 77 – 84.
dc.identifier.citedreferenceNavarro, S. S., R. Cimpoia, G. Bruant, and S. R. Guiot. 2014. Specific inhibitors for identifying pathways for methane production from carbon monoxide by a nonadapted anaerobic mixed culture. Can. J. Microbiol. 60: 407 – 415.
dc.identifier.citedreferenceOremland, R. S., and B. F. Taylor. 1975. Inhibition of methanogenesis in marine sediments by acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms. Appl. Microbiol. 30: 707 – 709.
dc.identifier.citedreferencePatra, A. K., and Z. Yu. 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 148: 352 – 360.
dc.identifier.citedreferencePennings, J. L. A., J. L. J. De Wijs, J. T. Keltjens, and C. Van Der Drift. 1997. Medium‐reductant directed expression of methyl coenzyme M reductase isoenzymes in Methanobacterium thermoautotrophicum (strain ΔH). FEBS Lett. 410: 235 – 237.
dc.identifier.citedreferencePerkins, P. S., S. J. Komisar, J. A. Puhakka, and J. F. Ferguson. 1994. Effects of electron donors and inhibitors on reductive dechlorination of 2,4,6‐Trichlorophenol. Water Res. 28: 2101 – 2107.
dc.identifier.citedreferencePihl, T. D., S. Sharma, and J. N. Reeve. 1994. Growth phase‐dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5‐methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum delta H. J. Bacteriol. 176: 6384 – 6391.
dc.identifier.citedreferencePinto, A. J., and L. Raskin. 2012. PCR biases strongly distort bacterial and archaeal community structure in pyrosequencing. PLoS ONE 7: e43093.
dc.identifier.citedreferencePrins, R. A., C. J. Van Nevel, and D. I. Demeyer. 1972. Pure culture studies of inhibitors for methanogenic bacteria. Antonie Van Leeuwenhoek 38: 281 – 287.
dc.identifier.citedreferenceQu, W., Y. Zhou, Y. Zhang, Y. Lu, X. Wang, D. Zhao, et al. 2012. MFEprimer‐2.0: a fast thermodynamics‐based program for checking PCR primer specificity. Nucleic Acids Res. 40: W205 – W208.
dc.identifier.citedreferenceReeve, J. N., J. Nölling, R. M. Morgan, and D. R. Smith. 1997. Methanogenesis: genes, genomes, and who’s on first? J. Bacteriol. 179: 5975 – 5986.
dc.identifier.citedreferenceRocca, J. D., E. K. Hall, J. T. Lennon, S. E. Evans, M. P. Waldrop, J. B. Cotner, et al. 2015. Relationships between protein‐encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 9: 1693 – 1699.
dc.identifier.citedreferenceSchirmer, M., U. Z. Ijaz, R. D’amore, N. Hall, W. T. Sloan, and C. Quince. 2015. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43: 1–16.
dc.identifier.citedreferenceSchloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, et al. 2009. Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537 – 7541.
dc.identifier.citedreferenceSmith, A. L., S. J. Skerlos, and L. Raskin. 2013. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 47: 1655 – 1665.
dc.identifier.citedreferenceSmith, A. L., S. J. Skerlos, and L. Raskin. 2015a. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15°C to 3°C. Environ. Sci. (Camb) 1: 56 – 64.
dc.identifier.citedreferenceSmith, A. L., S. J. Skerlos, and L. Raskin. 2015b. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment. Microb. Biotechnol. 8: 883 – 894.
dc.identifier.citedreferenceSoliva, C. R., I. K. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37: 35 – 39.
dc.identifier.citedreferenceSonthiphand, P., E. Cejudo, S. L. Schiff, and J. D. Neufeld. 2013. Wastewater effluent impacts ammonia‐oxidizing prokaryotes of the Grand River, Canada. Appl. Environ. Microbiol. 79: 7454 – 7465.
dc.identifier.citedreferenceSousa, D. Z., H. Smidt, M. M. Alves, and A. J. M. Stams. 2007. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long‐chain fatty acids in co‐culture with Methanobacterium formicicum. Int. J. Syst. Evol. Microbiol. 57: 609 – 615.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.