Show simple item record

Tests of species‐specific models reveal the importance of drought in postglacial range shifts of a Mediterranean‐climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection

dc.contributor.authorBemmels, Jordan B.
dc.contributor.authorTitle, Pascal O.
dc.contributor.authorOrtego, Joaquín
dc.contributor.authorKnowles, L. Lacey
dc.date.accessioned2016-10-17T21:18:41Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationBemmels, Jordan B.; Title, Pascal O.; Ortego, Joaquín ; Knowles, L. Lacey (2016). "Tests of species‐specific models reveal the importance of drought in postglacial range shifts of a Mediterranean‐climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection." Molecular Ecology 25(19): 4889-4906.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/134178
dc.description.abstractPast climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species‐specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade‐offs in functional traits, and local‐scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade‐off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.
dc.publisherCommission for Environmental Cooperation
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdrought
dc.subject.otherintegrative distributional demographic and coalescent modelling
dc.subject.otherApproximate Bayesian computation
dc.subject.othergenetic structure
dc.subject.otherclimate change
dc.subject.otherCalifornia Floristic Province
dc.titleTests of species‐specific models reveal the importance of drought in postglacial range shifts of a Mediterranean‐climate tree: insights from integrative distributional, demographic and coalescent modelling and ABC model selection
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134178/1/mec13804-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134178/2/mec13804.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134178/3/mec13804_am.pdf
dc.identifier.doi10.1111/mec.13804
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceOrtego J, Bonal R, Muñoz A, Aparicio JM ( 2014 ) Extensive pollen immigration and no evidence of disrupted mating patterns or reproduction in a highly fragmented holm oak stand. Journal of Plant Ecology, 7, 384 – 395.
dc.identifier.citedreferencePearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE ( 2010 ) Within‐taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography, 33, 990 – 1003.
dc.identifier.citedreferencePhillips SJ, Dudík M, Schapire RE ( 2004 ) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty‐First International Conference on Machine Learning, 2004, 655 – 662.
dc.identifier.citedreferencePhillips SJ, Anderson RP, Schapire RE ( 2006 ) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231 – 259.
dc.identifier.citedreferencePigott C, Huntley JP ( 1981 ) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III. Nature and causes of seed sterility. New Phytologist, 87, 817 – 839.
dc.identifier.citedreferencePinto CA, Henriques MO, Figueiredo JP et al. ( 2011 ) Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Forest Ecology and Management, 262, 500 – 508.
dc.identifier.citedreferencePritchard JK, Stephens M, Donnelly P ( 2000 ) Inference of population structure using multilocus genotype data. Genetics, 155, 945 – 959.
dc.identifier.citedreferenceRasztovits E, Berki I, Mátyás C et al. ( 2014 ) The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Annals of Forest Science, 71, 201 – 210.
dc.identifier.citedreferenceRay N, Currat M, Foll M, Excoffier L ( 2010 ) SPLATCHE2: a spatially explicit simulation framework for complex demography, genetic admixture and recombination. Bioinformatics, 26, 2993 – 2994.
dc.identifier.citedreferenceRitter EW, Hatoff BW ( 1975 ) Late Pleistocene pollen and sediments: an analysis of a central California locality. Texas Journal of Science, 29, 195 – 207.
dc.identifier.citedreferenceRoosma A ( 1958 ) A climatic record from Searles Lake, California. Science, 128, 716.
dc.identifier.citedreferenceSakai AA, Weiser CJ ( 1973 ) Freezing resistance of trees in North America with reference to tree regions. Ecology, 54, 118 – 126.
dc.identifier.citedreferenceSavolainen O, Pyhäjärvi T, Knürr T ( 2007 ) Gene flow and local adaptation in trees. Annual Review of Ecology Evolution and Systematics, 38, 595 – 619.
dc.identifier.citedreferenceSiefert A, Lesser MR, Fridley JD ( 2015 ) How do climate and dispersal traits limit ranges of tree species along latitudinal and elevational gradients? Global Ecology and Biogeography, 24, 581 – 593.
dc.identifier.citedreferenceSoltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS ( 2006 ) Comparative phylogeography of unglaciated eastern North America. Molecular Ecology, 15, 4261 – 4293.
dc.identifier.citedreferenceSteinkellner H, Fluch S, Turetschek E et al. ( 1997 ) Identification and characterization of (GA/CT) n ‐microsatellite loci from Quercus petraea. Plant Molecular Biology, 33, 1093 – 1096.
dc.identifier.citedreferenceTaberlet P, Fumagalli L, Wust‐Saucy A‐G, Cosson J‐F ( 1998 ) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453 – 464.
dc.identifier.citedreferenceThornburgh DA ( 1990 ) Canyon live oak. In: Silvics of North America: Volume 2. Hardwoods. Agriculture Handbook 654 (eds Burns RM, Honkala BH ), pp. 618 – 624. US Department of Agriculture, Forest Service, Washington, District of Columbia.
dc.identifier.citedreferenceUrli M, Lamy J‐B, Sin F et al. ( 2014 ) The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex. Plant Ecology, 216, 177 – 187.
dc.identifier.citedreferenceValladares F, Matesanz S, Guilhaumon F et al. ( 2014 ) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351 – 1364.
dc.identifier.citedreferenceVicente‐Serrano SM, Gouveia C, Camarero JJ et al. ( 2013 ) Response of vegetation to drought time‐scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52 – 57.
dc.identifier.citedreferenceWang T, Hamann A, Spittlehouse DL, Aitken SN ( 2006 ) Development of scale‐free climate data for western Canada for use in resource management. International Journal of Climatology, 26, 383 – 397.
dc.identifier.citedreferenceWang T, Hamann A, Spittlehouse DL, Murdock TQ ( 2012 ) ClimateWNA—high‐resolution spatial climate data for western North America. Journal of Applied Meteorology and Climatology, 51, 16 – 29.
dc.identifier.citedreferenceWegmann D, Leuenberger C, Neuenschwander S, Excoffier L ( 2010 ) ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 11, 116.
dc.identifier.citedreferenceWhite TL ( 1987 ) Drought tolerance of southwestern Oregon Douglas‐fir. Forest Science, 33, 283 – 293.
dc.identifier.citedreferenceAitken SN, Bemmels JB ( 2016 ) Time to get moving: assisted gene flow of forest trees. Evolutionary Applications, 9, 271 – 290.
dc.identifier.citedreferenceAlberto FJ, Aitken SN, Alía R et al. ( 2013 ) Potential for evolutionary responses to climate change ‐ evidence from tree populations. Global Change Biology, 19, 1645 – 1661.
dc.identifier.citedreferenceAllen CD, Macalady AK, Chenchouni H et al. ( 2010 ) A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660 – 684.
dc.identifier.citedreferenceAllié E, Pélissier R, Engel J et al. ( 2015 ) Pervasive local‐scale tree‐soil habitat association in a tropical forest community. PLoS ONE, 10, 1 – 17.
dc.identifier.citedreferenceAlvarado‐Serrano DF, Knowles LL ( 2014 ) Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources, 14, 233 – 248.
dc.identifier.citedreferenceAmante C, Eakins BW ( 2009 ) ETOPO1 1 arc‐minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA.
dc.identifier.citedreferenceAustin MP ( 2002 ) Spatial predictions of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101 – 118.
dc.identifier.citedreferenceBeaumont MA, Zhang W, Balding DJ ( 2002 ) Approximate Bayesian computation in population genetics. Genetics, 162, 2025 – 2035.
dc.identifier.citedreferenceBenito Garzón M, Alía R, Robson TM, Zavala MA ( 2011 ) Intra‐specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography, 20, 766 – 778.
dc.identifier.citedreferenceBoulesteix A‐L, Strimmer K ( 2006 ) Partial least squares: a versatile tool for the analysis of high‐dimensional genomic data. Briefings in Bioinformatics, 8, 32 – 44.
dc.identifier.citedreferenceBrown JL, Knowles LL ( 2012 ) Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Molecular Ecology, 21, 3757 – 3775.
dc.identifier.citedreferenceCarnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C ( 2009 ) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323, 785 – 789.
dc.identifier.citedreferenceCEC ( 1997 ) Ecological Regions of North America: Toward a Common Perspective. Commission for Environmental Cooperation, Montréal, QC.
dc.identifier.citedreferenceCole K ( 1983 ) Late pleistocene vegetation of Kings Canyon, Sierra Nevada, California. Quaternary Research, 19, 117 – 129.
dc.identifier.citedreferenceCook SR, Gelman A, Rubin DB ( 2006 ) Validation of software for Bayesian models using posterior quantiles. Journal of Computational and Graphical Statistics, 15, 675 – 692.
dc.identifier.citedreferenceCsilléry K, Blum MGB, Gaggiotti OE, François O ( 2010 ) Approximate Bayesian Computation (ABC) in practice. Trends in Ecology & Evolution, 25, 410 – 418.
dc.identifier.citedreferenceDaget P ( 1977 ) Le bioclimat méditerranéen: analyse des formes climatiques par le système d’Emberger. Vegetatio, 34, 87 – 103.
dc.identifier.citedreferenceDavis MB, Shaw RG ( 2001 ) Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673 – 679.
dc.identifier.citedreferenceDavis EB, Koo MS, Conroy C, Patton JL, Moritz C ( 2008 ) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular Ecology, 17, 120 – 138.
dc.identifier.citedreferenceDurand J, Bodénès C, Chancerel E et al. ( 2010 ) A fast and cost‐effective approach to develop and map EST‐SSR markers: oak as a case study. BMC Genomics, 11, 570.
dc.identifier.citedreferenceExcoffier L, Lischer HEL ( 2010 ) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564 – 567.
dc.identifier.citedreferenceFalush D, Stephens M, Pritchard JK ( 2003 ) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567 – 1587.
dc.identifier.citedreferenceFalush D, Stephens M, Pritchard JK ( 2007 ) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574 – 578.
dc.identifier.citedreferenceFitzpatrick MC, Keller SR ( 2015 ) Ecological genomics meets community‐level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 18, 1 – 16.
dc.identifier.citedreferenceFrei ES, Scheepens JF, Stöklin J ( 2012 ) Dispersal and microsite limitation of a rare alpine plant. Plant Ecology, 213, 395 – 406.
dc.identifier.citedreferenceGavin DG, Fitzpatrick MC, Gugger PF et al. ( 2014 ) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytologist, 204, 37 – 54.
dc.identifier.citedreferenceGillespie A, Porter S, Atwater BF ( 2004 ) Quaternary Glaciations ‐ Extent and Chronology. Part II: North America. Additional CD‐ROM. Elsevier, San Diego, California.
dc.identifier.citedreferenceGolicher D ( 2012 ) Implementing a bucket model using WorldClim layers. https://rpubs.com/dgolicher/2964. RPubs.
dc.identifier.citedreferenceGotelli NJ, Stanton‐Geddes J ( 2015 ) Climate change, genetic markers and species distribution modelling. Journal of Biogeography, 42, 1577 – 1585.
dc.identifier.citedreferenceGray LK, Hamann A ( 2013 ) Tracking suitable habitat for tree populations under climate change in western North America. Climatic Change, 117, 289 – 303.
dc.identifier.citedreferenceHällfors MH, Liao J, Dzurisin JDK et al. ( 2016 ) Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecological Applications, 26, 1154 – 1169.
dc.identifier.citedreferenceHe Q, Edwards DL, Knowles LL ( 2013 ) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution, 67, 3386 – 3402.
dc.identifier.citedreferenceHeusser LE, Kirby ME, Nichols JE ( 2015 ) Pollen‐based evidence of extreme drought during the last Glacial (32.6‐9.0 ka) in coastal southern California. Quaternary Science Reviews, 126, 242 – 253.
dc.identifier.citedreferenceHickerson MJ, Carstens BC, Cavender‐Bares J et al. ( 2010 ) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291 – 301.
dc.identifier.citedreferenceHijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005 ) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965 – 1978.
dc.identifier.citedreferenceHijmans RJ, van Etten J, Cheng J et al. ( 2015 ) Package “raster”. https://cran.r-project.org/web/packages/raster/index.html.
dc.identifier.citedreferenceHowe GT, Aitken SN, Neale DB et al. ( 2003 ) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 81, 1247 – 1266.
dc.identifier.citedreferenceHubisz MJ, Falush D, Stephens M, Pritchard JK ( 2009 ) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322 – 1332.
dc.identifier.citedreferenceJohn R, Dalling JW, Harms KE et al. ( 2007 ) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864 – 869.
dc.identifier.citedreferenceJoly RJ, Adams WT, Stafford SG ( 1989 ) Phenological and morphological responses of mesic and dry site sources of coastal Douglas‐fir to water deficit. Forest Science, 35, 987 – 1005.
dc.identifier.citedreferenceKampfer S, Lexer C, Glössl J, Steinkellner H ( 1998 ) Characterization of (GA) n microsatellite loci from Quercus robur. Hereditas, 129, 183 – 186.
dc.identifier.citedreferenceKass RE, Raftery AE ( 1995 ) Bayes factors. Journal of the American Statistical Association, 90, 773 – 795.
dc.identifier.citedreferenceKaya Z, Adams WT, Campbell RK ( 1994 ) Adaptive significance of intermittent shoot growth in Douglas‐fir seedlings. Tree Physiology, 14, 1277 – 1289.
dc.identifier.citedreferenceKearney M, Porter W ( 2009 ) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334 – 350.
dc.identifier.citedreferenceKnowles LL ( 2009 ) Statistical phylogeography. Annual Review of Ecology Evolution and Systematics, 40, 593 – 612.
dc.identifier.citedreferenceKnowles LL, Alvarado‐Serrano DF ( 2010 ) Exploring the population genetic consequences of the colonization process with spatio‐temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Molecular Ecology, 19, 3727 – 3745.
dc.identifier.citedreferenceKollas C, Körner C, Randin CF ( 2014 ) Spring frost and growing season length co‐control the cold range limits of broad‐leaved trees. Journal of Biogeography, 41, 773 – 783.
dc.identifier.citedreferenceKroiss SJ, HilleRisLambers J ( 2015 ) Recruitment limitation of long‐lived conifers: implications for climate change responses. Ecology, 96, 1286 – 1297.
dc.identifier.citedreferenceLancaster LT, Kay KM ( 2013 ) Origin and diversification of the California flora: re‐examining classic hypotheses with molecular phylogenies. Evolution, 67, 1041 – 1054.
dc.identifier.citedreferenceLanier HC, Massatti R, He Q, Olson LE, Knowles LL ( 2015 ) Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas ( Ochotona collaris ). Molecular Ecology, 24, 3688 – 3705.
dc.identifier.citedreferenceLee C‐R, Mitchell‐Olds T ( 2011 ) Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20, 4631 – 4642.
dc.identifier.citedreferenceLenz A, Vitasse Y, Hoch G, Körner C ( 2014 ) Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit. Journal of Ecology, 102, 1537 – 1548.
dc.identifier.citedreferenceLeuenberger C, Wegmann D ( 2010 ) Bayesian computation and model selection without likelihoods. Genetics, 184, 243 – 252.
dc.identifier.citedreferenceLinares JC, Tíscar PA ( 2011 ) Buffered climate change effects in a Mediterranean pine species: range limit implications from a tree‐ring study. Oecologia, 167, 847 – 859.
dc.identifier.citedreferenceLittle EL ( 1971 ) Atlas of United States trees, volume 1. Conifers and important hardwoods. USDA Miscellaneous Publication 1146. Washington, DC.
dc.identifier.citedreferenceLitwin RJ, Smoot JP, Durika NJ, Smith GI ( 1999 ) Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA. Quaternary Science Reviews, 18, 1151 – 1171.
dc.identifier.citedreferenceLoehle C ( 1998 ) Height growth rate tradeoffs northern determine and southern range limits for trees. Journal of Biogeography, 25, 735 – 742.
dc.identifier.citedreferenceMassatti R, Knowles LL ( 2014 ) Microhabitat differences impact phylogeographic concordance of codistributed species: genomic evidence in montane sedges ( Carex L.) from the Rocky Mountains. Evolution, 68, 2833 – 2846.
dc.identifier.citedreferenceMassatti R, Knowles LL ( 2016 ) Contrasting support for alternative models of genomic variation based on microhabitat preference: species‐specific effects of climate change in alpine sedges. Molecular Ecology, 25, 3974 – 3986.
dc.identifier.citedreferenceMcGann M ( 2015 ) Late Quaternary pollen record from the central California continental margin. Quaternary International, 387, 46 – 57.
dc.identifier.citedreferenceMellert KH, Fensterer V, Küchenhoff H et al. ( 2011 ) Hypothesis‐driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science, 22, 635 – 646.
dc.identifier.citedreferenceMetzger MJ, Bunce RGH, Jongman RHG et al. ( 2013 ) A high‐resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22, 630 – 638.
dc.identifier.citedreferenceMontserrat‐Martí G, Camarero JJ, Palacio S et al. ( 2009 ) Summer‐drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees, 23, 787 – 799.
dc.identifier.citedreferenceMorgan K, O’Loughlin SM, Chen B et al. ( 2011 ) Comparative phylogeography reveals a shared impact of pleistocene environmental change in shaping genetic diversity within nine Anopheles mosquito species across the Indo‐Burma biodiversity hotspot. Molecular Ecology, 20, 4533 – 4549.
dc.identifier.citedreferenceMorin X, Augspurger C, Chuine I ( 2007 ) Process‐based modeling of species’ distributions: what limits temperate tree species’ range boundaries? Ecology, 88, 2280 – 2291.
dc.identifier.citedreferenceMyers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J ( 2000 ) Biodiversity hotspots for conservation priorities. Nature, 403, 853 – 858.
dc.identifier.citedreferenceNeuenschwander S, Largiadèr CR, Ray N et al. ( 2008 ) Colonization history of the Swiss Rhine basin by the bullhead ( Cottus gobio ): inference under a Bayesian spatially explicit framework. Molecular Ecology, 17, 757 – 772.
dc.identifier.citedreferenceNormand S, Treier UA, Randin C et al. ( 2009 ) Importance of abiotic stress as a range‐limit determinant for European plants: insights from species responses to climatic gradients. Global Ecology and Biogeography, 18, 437 – 449.
dc.identifier.citedreferenceOrtego J, Gugger PF, Sork VL ( 2015 ) Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. Journal of Biogeography, 42, 328 – 338.
dc.identifier.citedreferencePapadopoulou A, Knowles LL ( 2016 ) A paradigm shift in comparative phylogeography driven by trait‐based hypotheses. Proceedings of the National Academy of Sciences of the United States of America, 113, 8018 – 8024.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.