Show simple item record

Genome‐wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance

dc.contributor.authorOzel, A. B.
dc.contributor.authorMcGee, B.
dc.contributor.authorSiemieniak, D.
dc.contributor.authorJacobi, P. M.
dc.contributor.authorHaberichter, S. L.
dc.contributor.authorBrody, L. C.
dc.contributor.authorMills, J. L.
dc.contributor.authorMolloy, A. M.
dc.contributor.authorGinsburg, D.
dc.contributor.authorLi, J. Z.
dc.contributor.authorDesch, K. C.
dc.date.accessioned2016-10-17T21:19:27Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationOzel, A. B.; McGee, B.; Siemieniak, D.; Jacobi, P. M.; Haberichter, S. L.; Brody, L. C.; Mills, J. L.; Molloy, A. M.; Ginsburg, D.; Li, J. Z.; Desch, K. C. (2016). "Genome‐wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance." Journal of Thrombosis and Haemostasis (9): 1888-1898.
dc.identifier.issn1538-7933
dc.identifier.issn1538-7836
dc.identifier.urihttps://hdl.handle.net/2027.42/134219
dc.publisherWiley Periodicals, Inc.
dc.subject.othervon Willebrand disease
dc.subject.othergenetic linkage analysis
dc.subject.othergenome‐wide association study
dc.subject.othervenous thromboembolism
dc.subject.othervon Willebrand factor
dc.titleGenome‐wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134219/1/jth13401-sup-0001-FigS1-S7.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134219/2/jth13401.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134219/3/jth13401_am.pdf
dc.identifier.doi10.1111/jth.13401
dc.identifier.sourceJournal of Thrombosis and Haemostasis
dc.identifier.citedreferencede Vries PS, Boender J, Sonneveld MA, Rivadeneira F, Ikram MA, Rottensteiner H, Hofman A, Uitterlinden AG, Leebeek FW, Franco OH, Dehghan A, de Maat MP. Genetic variants in the ADAMTS13 and SUPT3H genes are associated with ADAMTS13 activity. Blood 2015; 125: 3949 – 55.
dc.identifier.citedreferenceHowie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome‐wide association studies through pre‐phasing. Nat Genet 2012; 44: 955 – 9.
dc.identifier.citedreferenceZhu X, Li S, Cooper RS, Elston RC. A unified association analysis approach for family and unrelated samples correcting for stratification. Am J Hum Genet 2008; 82: 352 – 65.
dc.identifier.citedreferenceKang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. Variance component model to account for sample structure in genome‐wide association studies. Nat Genet 2010; 42: 348 – 54.
dc.identifier.citedreferencePurcell S, Neale B, Todd‐Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet 2007; 81: 559 – 75.
dc.identifier.citedreferenceDevlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55: 997 – 1004.
dc.identifier.citedreferenceWiller CJ, Li Y, Abecasis GR. METAL: fast and efficient meta‐analysis of genomewide association scans. Bioinformatics 2010; 26: 2190 – 1.
dc.identifier.citedreferencePruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. LocusZoom: regional visualization of genome‐wide association scan results. Bioinformatics 2010; 26: 2336 – 7.
dc.identifier.citedreferenceAdzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248 – 9.
dc.identifier.citedreferenceAbecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97 – 101.
dc.identifier.citedreferenceIhaka R, Gentleman R. R: a language for data analysis and graphics. J Comp Graph Stat 1996; 5: 299 – 314.
dc.identifier.citedreferenceYang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome‐wide complex trait analysis. Am J Hum Genet 2011; 88: 76 – 82.
dc.identifier.citedreferenceBarbalic M, Dupuis J, Dehghan A, Bis JC, Hoogeveen RC, Schnabel RB, Nambi V, Bretler M, Smith NL, Peters A, Lu C, Tracy RP, Aleksic N, Heeriga J, Keaney Jr JF, Rice K, Lip GY, Vasan RS, Glazer NL, Larson MG, et al. Large‐scale genomic studies reveal central role of ABO in sP‐selectin and sICAM‐1 levels. Hum Mol Genet 2010; 19: 1863 – 72.
dc.identifier.citedreferenceHuang J, Sabater‐Lleal M, Asselbergs FW, Tregouet D, Shin S‐Y, Ding J, Baumert J, Oudot‐Mellakh T, Folkersen L, Johnson AD, Smith NL, Williams SM, Ikram MA, Kleber ME, Becker DM, Truong V, Mychaleckyj JC, Tang W, Yang Q, Sennblad B, et al. Genome‐wide association study for circulating levels of PAI‐1 provides novel insights into its regulation. Blood 2012; 2012: 4873 – 81.
dc.identifier.citedreferenceTang W, Basu S, Kong X, Pankow JS, Aleksic N, Tan A, Cushman M, Boerwinkle E, Folsom AR. Genome‐wide association study identifies novel loci for plasma levels of protein C: the ARIC study. Blood 2010; 116: 5032 – 6.
dc.identifier.citedreferenceWelter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP‐trait associations. Nucleic Acids Res 2014; 42: D1001 – 6.
dc.identifier.citedreferenceFlood VH, Gill JC, Morateck PA, Christopherson PA, Friedman KD, Haberichter SL, Branchford BR, Hoffmann RG, Abshire TC, Di Paola JA, Hoots WK, Leissinger C, Lusher JM, Ragni MV, Shapiro AD, Montgomery RR. Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor. Blood 2010; 116: 280 – 6.
dc.identifier.citedreferenceSliwerska E, Meng F, Speed TP, Jones EG, Bunney WE, Akil H, Watson SJ, Burmeister M. SNPs on chips: the hidden genetic code in expression arrays. Biol Psychiatry 2007; 1: 13 – 16.
dc.identifier.citedreferenceBenovoy D, Kwan T, Majewski J. Effect of polymorphisms within probe‐target sequences on olignonucleotide microarray experiments. Nucleic Acids Res 2008; 36: 4417 – 23.
dc.identifier.citedreferenceVeyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK. High‐resolution mapping of expression‐QTLs yields insight into human gene regulation. PLoS Genet 2008; 4: e1000214.
dc.identifier.citedreferenceBoyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790 – 7.
dc.identifier.citedreferenceWard LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40: D930 – 4.
dc.identifier.citedreferenceSouto JC, Almasy L, Muniz‐Diaz E, Soria JM, Borrell M, Bayen L, Mateo J, Madoz P, Stone W, Blangero J, Fontcuberta J. Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 2000; 20: 2024 – 8.
dc.identifier.citedreferenceShima M, Fujimura Y, Nishiyama T, Tsujiuchi T, Narita N, Matsui T, Titani K, Katayama M, Yamamoto F, Yoshioka A. ABO blood group genotype and plasma von Willebrand factor in normal individuals. Vox Sang 1995; 68: 236 – 40.
dc.identifier.citedreferenceEikenboom J, Federici AB, Dirven RJ, Castaman G, Rodeghiero F, Budde U, Schneppenheim R, Batlle J, Canciani MT, Goudemand J, Peake I, Goodeve A. VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the characterization of type 1 von Willebrand disease. Blood 2013; 121: 2336 – 9.
dc.identifier.citedreferenceNossent AY, Van Marion V, Van Tilburg NH, Rosendaal FR, Bertina RM, Van Mourik JA, Eikenboom HC. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J Thromb Haemost 2006; 4: 2556 – 62.
dc.identifier.citedreferenceMarianor M, Zaidah AW, Maraina ChC. von Willebrand factor propeptide: a potential disease biomarker not affected by ABO blood groups. Biomarker Insights 2015; 10: 75 – 9.
dc.identifier.citedreferenceHampshire DJ, Goodeve AC. The International Society on Thrombosis and Haematosis von Willebrand disease database: an update. Semin Thromb Hemost 2011; 37: 470 – 9.
dc.identifier.citedreferenceSmith NL, Rice KM, Bovill EG, Cushman M, Bis JC, McKnight B, Lumley T, Glazer NL, van Hylckama Vlieg A, Tang W, Dehghan A, Strachan DP, O’Donnell CJ, Rotter JI, Heckbert SR, Psaty BM, Rosendaal FR. Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis. Blood 2011; 117: 6007 – 11.
dc.identifier.citedreferenceBladbjerg EM, de Maat MP, Christensen K, Bathum L, Jespersen J, Hjelmborg J. Genetic influence on thrombotic risk markers in the elderly – a Danish twin study. J Thromb Haemost 2006; 4: 599 – 607.
dc.identifier.citedreferencede Lange M, Snieder H, Ariens RA, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet 2001; 357: 101 – 5
dc.identifier.citedreferenceDesch KC, Ozel AB, Siemieniak D, Kalish Y, Shavit JA, Thornburg CD, Sharathkumar AA, McHugh CP, Laurie CC, Crenshaw A, Mirel DB, Kim Y, Cropp CD, Molloy AM, Kirke PN, Bailey‐Wilson JE, Wilson AF, Mills JL, Scott JM, Brody LC, et al. Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome‐wide association. Proc Natl Acad Sci USA 2013; 110: 588 – 93
dc.identifier.citedreferenceOrstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W. Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 1985; 37: 89 – 101.
dc.identifier.citedreferenceSouto JC, Almasy L, Soria JM, Buil A, Stone W, Lathrop M, Blangero J, Fontcuberta J. Genome‐wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project. Thromb Haemost 2003; 89: 468 – 74.
dc.identifier.citedreferenceSadler JE. von Willebrand factor: two sides of a coin. J Thromb Haemost. 2005; 3: 1702 – 9.
dc.identifier.citedreferenceSonneveld MA, de Maat MP, Leebeek FW. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systematic review and meta‐analysis. Blood Rev 2014; 28: 167 – 78.
dc.identifier.citedreferenceSanders YV, van der Bom JG, Isaacs A, Cnossen MH, de Maat MP, Laros‐van Gorkom BA, Fijnvandraat K, Meijer K, van Duijn CM, Mauser‐Bunschoten EP, Eikenboom J, Leebeek FW, Wi NSG. CLEC4M and STXBP5 gene variations contribute to von Willebrand factor level variation in von Willebrand disease. J Thromb Haemost 2015; 13: 956 – 66.
dc.identifier.citedreferenceSmith NL, Chen MH, Dehghan A, Strachan DP, Basu S, Soranzo N, Hayward C, Rudan I, Sabater‐Lleal M, Bis JC, de Maat MP, Rumley A, Kong X, Yang Q, Williams FM, Vitart V, Campbell H, Malarstig A, Wiggins KL, Van Duijn CM, et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 2010; 121: 1382 – 92.
dc.identifier.citedreferenceCampos M, Sun W, Yu F, Barbalic M, Tang W, Chambless LE, Wu KK, Ballantyne C, Folsom AR, Boerwinkle E, Dong JF. Genetic determinants of plasma von Willebrand factor antigen levels: a target gene SNP and haplotype analysis of ARIC cohort. Blood 2011; 117: 5224 – 30.
dc.identifier.citedreferenceGroeneveld DJ, van Bekkum T, Cheung KL, Dirven RJ, Castaman G, Reitsma PH, van Vlijmen B, Eikenboom J. No evidence for a direct effect of von Willebrand factor’s ABH blood group antigens on von Willebrand factor clearance. J Thromb Haemost 2015; 13: 592 – 600.
dc.identifier.citedreferenceGallinaro L, Cattini MG, Sztukowska M, Padrini R, Sartorello F, Pontara E, Bertomoro A, Daidone V, Pagnan A, Casonato A. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood 2008; 111: 3540 – 5.
dc.identifier.citedreferenceO’Donnell J, Boulton FE, Manning RA, Laffan MA. Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol 2002; 1: 335 – 41.
dc.identifier.citedreferenceMohlke KL, Purkayastha AA, Westrick RJ, Smith PL, Petryniak B, Lowe JB, Ginsburg D. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage‐specific expression of a glycosyltransferase. Cell 1999; 96: 111 – 20.
dc.identifier.citedreferenceSpringer TA. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost 2011; 9 ( Suppl. 1 ): 130 – 43.
dc.identifier.citedreferenceHaberichter SL, Balistreri M, Christopherson P, Morateck P, Gavazova S, Bellissimo DB, Manco‐Johnson MJ, Gill JC, Montgomery RR. Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood 2006; 108: 3344 – 51.
dc.identifier.citedreferenceHaberichter SL, Castaman G, Budde U, Peake I, Goodeve A, Rodeghiero F, Federici AB, Batlle J, Meyer D, Mazurier C, Goudemand J, Eikenboom J, Schneppenheim R, Ingerslev J, Vorlova Z, Habart D, Holmberg L, Lethagen S, Pasi J, Hill FG, et al. Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: molecular and clinical markers for the diagnosis and management of type 1 VWD (MCMDM‐1VWD). Blood 2008; 111: 4979 – 85.
dc.identifier.citedreferenceHaberichter SL. von Willebrand factor propeptide: biology and clinical utility. Blood 2015; 8: 1753 – 61.
dc.identifier.citedreferenceMa Q, Ozel AB, Ramdas S, McGee B, Khoriaty R, Siemieniak D, Li HD, Guan Y, Brody LC, Mills JL, Molloy AM, Ginsburg D, Li JZ, Desch KC. Genetic variants in PLG, LPA, and SIGLEC 14 as well as smoking contribute to plasma plasminogen levels. Blood 2014; 124: 3155 – 64.
dc.identifier.citedreferenceDesch K, Li J, Kim S, Laventhal N, Metzger K, Siemieniak D, Ginsburg D. Analysis of informed consent document utilization in a minimal‐risk genetic study. Ann Intern Med 2011; 155: 316 – 22.
dc.identifier.citedreferenceMailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L, Kiang A, Paschall J, Phan L, Popova N, Pretel S, Ziyabari L, Lee M, Shao Y, Wang ZY, Sirotkin K, Ward M, Kholodov M, Zbicz K, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39: 1181 – 6.
dc.identifier.citedreferenceBrowning BL, Browning SR. A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009; 84: 210 – 23.
dc.identifier.citedreferenceDelaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype estimation using sequencing reads. Am J Hum Genet 2013; 93: 687 – 96.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.