Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator‐deficient mouse strains
dc.contributor.author | Szabo, R. | |
dc.contributor.author | Samson, A. L. | |
dc.contributor.author | Lawrence, D. A. | |
dc.contributor.author | Medcalf, R. L. | |
dc.contributor.author | Bugge, T. H. | |
dc.date.accessioned | 2016-10-17T21:20:22Z | |
dc.date.available | 2017-10-05T14:33:49Z | en |
dc.date.issued | 2016-08 | |
dc.identifier.citation | Szabo, R.; Samson, A. L.; Lawrence, D. A.; Medcalf, R. L.; Bugge, T. H. (2016). "Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator‐deficient mouse strains." Journal of Thrombosis and Haemostasis 14(8): 1618-1628. | |
dc.identifier.issn | 1538-7933 | |
dc.identifier.issn | 1538-7836 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/134273 | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | mutation | |
dc.subject.other | congenic mice | |
dc.subject.other | brain | |
dc.subject.other | tissue plasminogen activator | |
dc.subject.other | gene targeting | |
dc.title | Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator‐deficient mouse strains | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Internal Medicine and Specialties | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/134273/1/jth13338_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/134273/2/jth13338.pdf | |
dc.identifier.doi | 10.1111/jth.13338 | |
dc.identifier.source | Journal of Thrombosis and Haemostasis | |
dc.identifier.citedreference | Barrow J, Adamowicz‐Brice M, Cartmill M, MacArthur D, Lowe J, Robson K, Brundler MA, Walker DA, Coyle B, Grundy R. Homozygous loss of ADAM3A revealed by genome‐wide analysis of pediatric high‐grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol 2011; 13: 212 – 22. | |
dc.identifier.citedreference | Sawaya R, Highsmith R. Plasminogen activator activity and molecular weight patterns in human brain tumors. J Neurosurg 1988; 68: 73 – 9. | |
dc.identifier.citedreference | Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellaker C, Goodstadt L, Nicod J, Bhomra A, Hernandez‐Pliego P, Whitley H, Cleak J, Dutton R, Janowitz D, Mott R, Adams DJ, Flint J. Sequence‐based characterization of structural variation in the mouse genome. Nature 2011; 477: 326 – 9. | |
dc.identifier.citedreference | Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez‐Pliego P, Edwards A, Belgard TG, Oliver PL, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477: 289 – 94. | |
dc.identifier.citedreference | Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419 – 24. | |
dc.identifier.citedreference | Tsuji T, Ohta Y, Kanno Y, Hirose K, Ohashi K, Mizuno K. Involvement of p114‐RhoGEF and Lfc in Wnt‐3a‐ and dishevelled‐induced RhoA activation and neurite retraction in N1E‐115 mouse neuroblastoma cells. Mol Biol Cell 2010; 21: 3590 – 600. | |
dc.identifier.citedreference | Kurose K, Hiratsuka K, Ishiwata K, Nishikawa J, Nonen S, Azuma J, Kato M, Wakeno M, Okugawa G, Kinoshita T, Kurosawa T, Hasegawa R, Saito Y. Genome‐wide association study of SSRI/SNRI‐induced sexual dysfunction in a Japanese cohort with major depression. Psychiatry Res 2012; 198: 424 – 9. | |
dc.identifier.citedreference | Hayashi T, Yoshida T, Ra M, Taguchi R, Mishina M. IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway. PLoS ONE 2013; 8: e66254. | |
dc.identifier.citedreference | Rose JE, Behm FM, Drgon T, Johnson C, Uhl GR. Personalized smoking cessation: interactions between nicotine dose, dependence and quit‐success genotype score. Mol Med 2010; 16: 247 – 53. | |
dc.identifier.citedreference | Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ, Karbani G, Jafri H, Rashid Y, Mueller RF, Markham AF, Woods CG. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 2002; 71: 136 – 42. | |
dc.identifier.citedreference | Sashindranath M, Sales E, Daglas M, Freeman R, Samson AL, Cops EJ, Beckham S, Galle A, McLean C, Morganti‐Kossmann C, Rosenfeld JV, Madani R, Vassalli JD, Su EJ, Lawrence DA, Medcalf RL. The tissue‐type plasminogen activator‐plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain 2012; 135: 3251 – 64. | |
dc.identifier.citedreference | Tsirka SE, Bugge TH, Degen JL, Strickland S. Neuronal death in the central nervous system demonstrates a non‐fibrin substrate for plasmin. Proc Natl Acad Sci U S A 1997; 94: 9779 – 81. | |
dc.identifier.citedreference | Tabares‐Seisdedos R, Rubenstein JL. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14: 563 – 89. | |
dc.identifier.citedreference | Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, von Kalle C. An unbiased genome‐wide analysis of zinc‐finger nuclease specificity. Nat Biotechnol 2011; 29: 816 – 23. | |
dc.identifier.citedreference | Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off‐target cleavage specificities of zinc‐finger nucleases by in vitro selection. Nat Methods 2011; 8: 765 – 70. | |
dc.identifier.citedreference | Bugge TH, Suh TT, Flick MJ, Daugherty CC, Romer J, Solberg H, Ellis V, Dano K, Degen JL. The receptor for urokinase‐type plasminogen activator is not essential for mouse development or fertility. J Biol Chem 1995; 270: 16886 – 94. | |
dc.identifier.citedreference | Dewerchin M, Nuffelen AV, Wallays G, Bouche A, Moons L, Carmeliet P, Mulligan RC, Collen D. Generation and characterization of urokinase receptor‐deficient mice. J Clin Investig 1996; 97: 870 – 8. | |
dc.identifier.citedreference | Bugge TH, Flick MJ, Daugherty CC, Degen JL. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9: 794 – 807. | |
dc.identifier.citedreference | Ploplis VA, Carmeliet P, Vazirzadeh S, van Vlaenderen I, Moons L, Plow EF, Collen D. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 1995; 92: 2585 – 93. | |
dc.identifier.citedreference | Carmeliet P, Kieckens L, Schoonjans L, Ream B, van Nuffelen A, Prendergast G, Cole M, Bronson R, Collen D, Mulligan RC. Plasminogen activator inhibitor‐1 gene‐deficient mice. I. Generation by homologous recombination and characterization.. J Clin Invest 1993; 92: 2746 – 55. | |
dc.identifier.citedreference | Lijnen HR, Okada K, Matsuo O, Collen D, Dewerchin M. Alpha2‐antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding. Blood 1999; 93: 2274 – 81. | |
dc.identifier.citedreference | Ling Q, Jacovina AT, Deora A, Febbraio M, Simantov R, Silverstein RL, Hempstead B, Mark WH, Hajjar KA. Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Investig 2004; 113: 38 – 48. | |
dc.identifier.citedreference | Bronson SK, Smithies O. Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 1994; 269: 27155 – 8. | |
dc.identifier.citedreference | Vanden Berghe T, Hulpiau P, Martens L, Vandenbroucke RE, van Wonterghem E, Perry SW, Bruggeman I, Divert T, Choi SM, Vuylsteke M, Shestopalov VI, Libert C, Vandenabeele P. Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity 2015; 43: 200 – 9. | |
dc.identifier.citedreference | Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose‐Girma M, Dixit VM. Non‐canonical inflammasome activation targets caspase‐11. Nature 2011; 479: 117 – 21. | |
dc.identifier.citedreference | Kenneth NS, Younger JM, Hughes ED, Marcotte D, Barker PA, Saunders TL, Duckett CS. An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c‐IAP1. Biochem J 2012; 443: 355 – 9. | |
dc.identifier.citedreference | Collen D, Lijnen HR. The fibrinolytic system in man. Crit Rev Oncol Hematol 1986; 4: 249 – 301. | |
dc.identifier.citedreference | Soreq H, Miskin R. Plasminogen activator in the rodent brain. Brain Res 1981; 216: 361 – 74. | |
dc.identifier.citedreference | Krystosek A, Seeds NW. Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc Natl Acad Sci U S A 1981; 78: 7810 – 4. | |
dc.identifier.citedreference | Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D. Tissue‐plasminogen activator is induced as an immediate‐early gene during seizure, kindling and long‐term potentiation. Nature 1993; 361: 453 – 7. | |
dc.identifier.citedreference | Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD. Extracellular proteolysis in the adult murine brain. J Clin Investig 1993; 92: 679 – 85. | |
dc.identifier.citedreference | Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator‐plasmin system in the hippocampus. J Neurosci 2002; 22: 2125 – 34. | |
dc.identifier.citedreference | Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin‐induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995; 377: 340 – 4. | |
dc.identifier.citedreference | Siddiq MM, Tsirka SE. Modulation of zinc toxicity by tissue plasminogen activator. Mol Cell Neurosci 2004; 25: 162 – 71. | |
dc.identifier.citedreference | Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild‐type and tPA‐deficient mice. Nat Med 1998; 4: 228 – 31. | |
dc.identifier.citedreference | Frey U, Muller M, Kuhl D. A different form of long‐lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci 1996; 16: 2057 – 63. | |
dc.identifier.citedreference | Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, Schoonjans L, Kandel ER, Godfraind JM, Mulligan R, Collen D, Carmeliet P. Mice lacking the gene encoding tissue‐type plasminogen activator show a selective interference with late‐phase long‐term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A 1996; 93: 8699 – 704. | |
dc.identifier.citedreference | Medina MG, Ledesma MD, Dominguez JE, Medina M, Zafra D, Alameda F, Dotti CG, Navarro P. Tissue plasminogen activator mediates amyloid‐induced neurotoxicity via Erk1/2 activation. EMBO J 2005; 24: 1706 – 16. | |
dc.identifier.citedreference | Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S. Tissue plasminogen activator promotes the effects of corticotropin‐releasing factor on the amygdala and anxiety‐like behavior. Proc Natl Acad Sci U S A 2004; 101: 16345 – 50. | |
dc.identifier.citedreference | Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S. Tissue plasminogen activator in the amygdala is critical for stress‐induced anxiety‐like behavior. Nat Neurosci 2003; 6: 168 – 74. | |
dc.identifier.citedreference | Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T. The tissue plasminogen activator‐plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 2004; 101: 3650 – 5. | |
dc.identifier.citedreference | Maiya R, Zhou Y, Norris EH, Kreek MJ, Strickland S. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci U S A 2009; 106: 1983 – 8. | |
dc.identifier.citedreference | Noel M, Norris EH, Strickland S. Tissue plasminogen activator is required for the development of fetal alcohol syndrome in mice. Proc Natl Acad Sci U S A 2011; 108: 5069 – 74. | |
dc.identifier.citedreference | Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue‐type plasminogen activator induces opening of the blood‐brain barrier via the LDL receptor‐related protein. J Clin Investig 2003; 112: 1533 – 40. | |
dc.identifier.citedreference | Seeds NW, Basham ME, Haffke SP. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A 1999; 96: 14118 – 23. | |
dc.identifier.citedreference | Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A. The proteolytic activity of tissue‐plasminogen activator enhances NMDA receptor‐mediated signaling. Nat Med 2001; 7: 59 – 64. | |
dc.identifier.citedreference | Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long‐term hippocampal plasticity. Science 2004; 306: 487 – 91. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.