Show simple item record

Can ring current stabilize magnetotail during steady magnetospheric convection?

dc.contributor.authorDubyagin, S.
dc.contributor.authorGanushkina, N.
dc.contributor.authorLiemohn, M.
dc.contributor.authorKubyshkina, M.
dc.date.accessioned2017-01-06T20:45:49Z
dc.date.available2017-01-06T20:45:49Z
dc.date.issued2015-12
dc.identifier.citationDubyagin, S.; Ganushkina, N.; Liemohn, M.; Kubyshkina, M. (2015). "Can ring current stabilize magnetotail during steady magnetospheric convection?." Journal of Geophysical Research: Space Physics 120(12): 10,528-10,542.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134802
dc.description.abstractThe present study investigates the role of the ring current in stabilizing the magnetotail during steady magnetospheric convection (SMC) events. We develop a method for estimation of the symmetric ring current intensity from the single spacecraft magnetic field observations. The method is applied to a large number of SMC events identified using three different automatic procedures adopted from the literature. It is found that the symmetric ring current can be weak or strong depending on a particular event. We find a significant fraction of events that have a rather weak symmetric ring current in spite of the strong solar wind driving during the event. These findings imply that the symmetric ring current plays no role in the magnetotail stabilization.Key PointsAnalysis of AE‐based criteria for SMC selectionNew method for ring current intensity estimationRing current plays no role in magnetotail stabilization
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.othermagnetotail stabilization
dc.subject.othersteady magnetospheric convection
dc.titleCan ring current stabilize magnetotail during steady magnetospheric convection?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134802/1/jgra52295_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134802/2/jgra52295.pdf
dc.identifier.doi10.1002/2015JA022003
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSchindler, K. ( 2007 ), Physics of Space Plasma Activity, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.
dc.identifier.citedreferenceO’Brien, T. P., S. M. Thompson, and R. L. McPherron ( 2002 ), Steady magnetospheric convention: Statistical signatures in the solar wind and AE, Geophys. Res. Lett., 29 ( 7 ), 1130, doi: 10.1029/2001GL014641.
dc.identifier.citedreferencePulkkinen, T. I., D. N. Baker, D. H. Fairfield, R. J. Pellinen, J. S. Murphree, R. D. Elphinstone, R. L. McPherron, J. F. Fennell, R. E. Lopez, and T. Nagai ( 1991 ), Modeling the growth phase of a substorm using the Tsyganenko Model and multi‐spacecraft observations: CDAW‐9, Geophys. Res. Lett., 18, 1963 – 1966, doi: 10.1029/91GL02002.
dc.identifier.citedreferencePulkkinen, T. I., N. Partamies, J. Kissinger, R. L. McPherron, K.‐H. Glassmeier, and C. Carlson ( 2013 ), Plasma sheet magnetic fields and flows during steady magnetospheric convection events, J. Geophys. Res. Space Physics, 118, 6136 – 6144, doi: 10.1002/jgra.50574.
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, I. V. Sokolov, G. Tóth, and D. T. Welling ( 2010 ), Numerical considerations in simulating the global magnetosphere, Ann. Geophys., 28, 1589 – 1614, doi: 10.5194/angeo‐28‐1589‐2010.
dc.identifier.citedreferenceRussell, C. T., R. C. Snare, J. D. Means, D. Pierce, D. Dearborn, M. Larson, G. Barr, and G. Le ( 1995 ), The GGS/POLAR magnetic fields investigation, Space Sci. Rev., 71, 563 – 582, doi: 10.1007/BF00751341.
dc.identifier.citedreferenceSergeev, V. A., T. I. Pulkkinen, R. J. Pellinen, and N. A. Tsyganenko ( 1994 ), Hybrid state of the tail magnetic configuration during steady convection events, J. Geophys. Res., 99 ( A12 ), 23,571 – 23,582, doi: 10.1029/94JA01980.
dc.identifier.citedreferenceSergeev, V. A., R. J. Pellinen, and T. I. Pulkkinen ( 1996 ), Steady magnetospheric convection: A review of recent results, Space Sci. Rev., 75, 551 – 604.
dc.identifier.citedreferenceSergeev, V. A., M. V. Kubyshkina, K. Liou, P. T. Newell, G. Parks, R. Nakamura, and T. Mukai ( 2001 ), Substorm and convection bay compared: Auroral and magnetotail dynamics during convection bay, J. Geophys. Res., 106 ( A9 ), 18,843 – 18,855, doi: 10.1029/2000JA900087.
dc.identifier.citedreferenceSergeev, V. A., D. A. Sormakov, and V. Angelopoulos ( 2014 ), A missing variable in solar wind‐magnetosphere‐ionosphere coupling studies, Geophys. Res. Lett., 41, 8215 – 8220, doi: 10.1002/2014GL062271.
dc.identifier.citedreferenceShukhtina, M. A., N. P. Dmitrieva, N. G. Popova, V. A. Sergeev, A. G. Yahnin, and I. V. Despirak ( 2005 ), Observational evidence of the loading‐unloading substorm scheme, Geophys. Res. Lett., 32, L17107, doi: 10.1029/2005GL023779.
dc.identifier.citedreferenceTanskanen, E. I., J. A. Slavin, D. H. Fairfield, D. G. Sibeck, J. Gjerloev, T. Mukai, A. Ieda, and T. Nagai ( 2005 ), Magnetotail response to prolonged southward IMF Bz intervals: Loading, unloading, and continuous magnetospheric dissipation, J. Geophys. Res., 110, A03216, doi: 10.1029/2004JA010561.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002a ), A model of the magnetosphere with a dawn‐dusk asymmetry, 1, Mathematical structure, J. Geophys. Res., 107 ( A8 ), 1179, doi: 10.1029/2001JA000219.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002b ), A model of the near magnetosphere with a dawn‐dusk asymmetry 2. Parameterization and fitting to observations, J. Geophys. Res., 107 ( A8 ), 1176, doi: 10.1029/2001JA000220.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2009 ), Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data, Ann. Geophys., 27, 1573 – 1582, doi: 10.5194/angeo‐27‐1573‐2009.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2013 ), Data‐based modelling of the Earth’s dynamic magnetosphere: A review, Ann. Geophys., 31, 1745 – 1772, doi: 10.5194/angeo‐31‐1745‐2013.
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2005 ), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi: 10.1029/2004JA010798.
dc.identifier.citedreferenceTurner, N. E., D. N. Baker, T. I. Pulkkinen, and R. L. McPherron ( 2000 ), Evaluation of the tail current contribution to Dst, J. Geophys. Res., 105 ( A3 ), 5431 – 5439, doi: 10.1029/1999JA000248.
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010 ), Validation of SWMF magnetic field and plasma, Space Weather, 8, S03002, doi: 10.1029/2009SW000494.
dc.identifier.citedreferenceYahnin, A., et al. ( 1994 ), Features of steady magnetospheric convection, J. Geophys. Res., 99 ( A3 ), 4039 – 4051, doi: 10.1029/93JA02868.
dc.identifier.citedreferenceAkasofu, S.‐I., B.‐H. Ahn, Y. Kamide, and J. H. Allen ( 1983 ), A note on the accuracy of the auroral electrojet indices, J. Geophys. Res., 88 ( A7 ), 5769 – 5772, doi: 10.1029/JA088iA07p05769.
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, V. V. Kalegaev, Y. I. Feldstein, and A. Grafe ( 1996 ), Magnetic storms and magnetotail currents, J. Geophys. Res., 101 ( A4 ), 7737 – 7747, doi: 10.1029/95JA03509.
dc.identifier.citedreferenceAngelopoulos, V., W. Baumjohann, C. Kennel, F. Coroniti, M. Kivelson, R. Pellat, R. Walker, H. Lu h ̈ r, and G. Paschmann ( 1992 ), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97 ( A4 ), 4027 – 4039.
dc.identifier.citedreferenceArnoldy, R. L., and K. W. Chan ( 1969 ), Particle substorms observed at the geostationary orbit, J. Geophys. Res., 74 ( 21 ), 5019 – 5028, doi: 10.1029/JA074i021p05019.
dc.identifier.citedreferenceBaker, D. N., et al. ( 1982 ), Observation and modeling of energetic particles at synchronous orbit on July 29, 1977, J. Geophys. Res., 87 ( A8 ), 5917 – 5932, doi: 10.1029/JA087iA08p05917.
dc.identifier.citedreferenceBalogh, A., et al. ( 2001 ), The cluster magnetic field investigation: Overview of in‐flight performance and initial results, Ann. Geophys., 19, 1207 – 1217, doi: 10.5194/angeo‐19‐1207‐2001.
dc.identifier.citedreferenceBoyle, C. B., P. H. Reiff, and M. R. Hairston ( 1997 ), Empirical polar cap potentials, J. Geophys. Res., 102 ( A1 ), 111 – 125, doi: 10.1029/96JA01742.
dc.identifier.citedreferenceBrittnacher, M., K. B. Quest, and H. Karimabadi ( 1994 ), On the energy principle and ion tearing in the magnetotail, Geophys. Res. Lett., 21, 1591 – 1594, doi: 10.1029/94GL01697.
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80 ( 31 ), 4204 – 4214, doi: 10.1029/JA080i031p04204.
dc.identifier.citedreferenceDeJong, A. D. ( 2014 ), Steady magnetospheric convection events: How much does steadiness matter?, J. Geophys. Res. Space Physics, 119, 4389 – 4399, doi: 10.1002/2013JA019220.
dc.identifier.citedreferenceDeJong, A. D., and C. R. Clauer ( 2005 ), Polar UVI images to study steady magnetospheric convection events: Initial results, Geophys. Res. Lett., 32, L24101, doi: 10.1029/2005GL024498.
dc.identifier.citedreferenceDe Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a global MHD code and an inner magnetosphere model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.
dc.identifier.citedreferenceDmitrieva, N. P., V. A. Sergeev, and M. A. Shukhtina ( 2004 ), Average characteristics of the midtail plasma sheet in different dynamic regimes of the magnetosphere, Ann. Geophys., 22, 2107 – 2113, doi: 10.5194/angeo‐22‐2107‐2004.
dc.identifier.citedreferenceDubyagin, S., N. Ganushkina, M. Kubyshkina, and M. Liemohn ( 2014 ), Contribution from different current systems to SYM and ASY midlatitude indices, J. Geophys. Res. Space Physics, 119, 7243 – 7263, doi: 10.1002/2014JA020122.
dc.identifier.citedreferenceGabrielse, C., V. Angelopoulos, A. Runov, and D. L. Turner ( 2014 ), Statistical characteristics of particle injections throughout the equatorial magnetotail, J. Geophys. Res. Space Physics, 119, 2512 – 2535, doi: 10.1002/2013JA019638.
dc.identifier.citedreferenceGanushkina, N. Y., T. I. Pulkkinen, M. V. Kubyshkina, H. J. Singer, and C. T. Russell ( 2004 ), Long‐term evolution of magnetospheric current systems during storms, Ann. Geophys., 22, 1317 – 1334, doi: 10.5194/angeo‐22‐1317‐2004.
dc.identifier.citedreferenceGanushkina, N. Y., M. W. Liemohn, M. V. Kubyshkina, R. Ilie, and H. J. Singer ( 2010 ), Distortions of the magnetic field by storm‐time current systems in Earth’s magnetosphere, Ann. Geophys., 28, 123 – 140, doi: 10.5194/angeo‐28‐123‐2010.
dc.identifier.citedreferenceGanushkina, N. Y., S. Dubyagin, M. Kubyshkina, M. Liemohn, and A. Runov ( 2012 ), Inner magnetosphere currents during the CIR/HSS storm on July 21–23, 2009, J. Geophys. Res., 117, A00L04, doi: 10.1029/2011JA017393.
dc.identifier.citedreferenceGanushkina, N. Y., et al. ( 2015 ), Defining and resolving current systems in geospace, Ann. Geophys., 33, 1369 – 1402.
dc.identifier.citedreferenceHäkkinen, L. V. T., T. I. Pulkkinen, H. Nevanlinna, R. J. Pirjola, and E. I. Tanskanen ( 2002 ), Effects of induced currents on Dst and on magnetic variations at midlatitude stations, J. Geophys. Res., 107 ( A1 ), 1014, doi: 10.1029/2001JA900130.
dc.identifier.citedreferenceJuusola, L., N. Partamies, and E. Tanskanen ( 2013 ), Effect of the ring current on preconditioning the magnetosphere for steady magnetospheric convection, Geophys. Res. Lett., 40, 1917 – 1921, doi: 10.1002/grl.50405.
dc.identifier.citedreferenceKalegaev, V. V., N. Y. Ganushkina, T. I. Pulkkinen, M. V. Kubyshkina, H. J. Singer, and C. T. Russell ( 2005 ), Relation between the ring current and the tail current during magnetic storms, Ann. Geophys., 23, 523 – 533, doi: 10.5194/angeo‐23‐523‐2005.
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐ to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.
dc.identifier.citedreferenceKissinger, J., R. L. McPherron, T.‐S. Hsu, and V. Angelopoulos ( 2011 ), Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle, J. Geophys. Res., 116, A00I19, doi: 10.1029/2010JA015763.
dc.identifier.citedreferenceKissinger, J., R. L. McPherron, T.‐S. Hsu, V. Angelopoulos, and X. Chu ( 2012 ), Necessity of substorm expansions in the initiation of steady magnetospheric convection, Geophys. Res. Lett., 39, L15105, doi: 10.1029/2012GL052599.
dc.identifier.citedreferenceKubyshkina, M. V., V. A. Sergeev, and T. I. Pulkkinen ( 1999 ), Hybrid Input Algorithm: An event‐oriented magnetospheric model, J. Geophys. Res., 104 ( A11 ), 24,977 – 24,993, doi: 10.1029/1999JA900222.
dc.identifier.citedreferenceKubyshkina, M., V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, H. Singer, K. H. Glassmeier, H. U. Auster, and W. Baumjohann ( 2009 ), Toward adapted time‐dependent magnetospheric models: A simple approach based on tuning the standard model, J. Geophys. Res., 114, A00C21, doi: 10.1029/2008JA013547.
dc.identifier.citedreferenceLembege, B., and R. Pellat ( 1982 ), Stability of a thick two‐dimensional quasineutral sheet, Phys. Fluids, 25, 1995 – 2004, doi: 10.1063/1.863677.
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, M. F. Thomsen, J. L. Roeder, G. Lu, J. E. Borovsky, and T. E. Cayton ( 2001a ), Dominant role of the asymmetric ring current in producing the stormtime Dst*, J. Geophys. Res., 106 ( A6 ), 10,883 – 10,904, doi: 10.1029/2000JA000326.
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, C. R. Clauer, and A. J. Ridley ( 2001b ), Computational analysis of the near‐Earth magnetospheric current system during two‐phase decay storms, J. Geophys. Res., 106 ( A12 ), 29,531 – 29,542, doi: 10.1029/2001JA000045.
dc.identifier.citedreferenceLiemohn, M. W., D. L. De Zeeuw, R. Ilie, and N. Y. Ganushkina ( 2011 ), Deciphering magnetospheric cross‐field currents, Geophys. Res. Lett., 38, L20106, doi: 10.1029/2011GL049611.
dc.identifier.citedreferenceMaltsev, Y. P. ( 2004 ), Points of controversy in the study of magnetic storms, Space Sci. Rev., 110 ( 3 ), 227 – 267, doi: 10.1023/B:SPAC.0000023410.77752.30.
dc.identifier.citedreferenceMcPherron, R. L., T. P. O’Brien, and S. M. Thompson ( 2005 ), Solar wind drivers for steady magnetospheric convection, in Multiscale Coupling of the Sun‐Earth Processes, edited by A. T. Y. Liu, Y. Kamide, and G. Consolini, pp. 113 – 124, Elsevier, Amsterdam.
dc.identifier.citedreferenceMilan, S. E., J. Hutchinson, P. D. Boakes, and B. Hubert ( 2009 ), Influences on the radius of the auroral oval, Ann. Geophys., 27, 2913 – 2924, doi: 10.5194/angeo‐27‐2913‐2009.
dc.identifier.citedreferenceNakai, H., and Y. Kamide ( 2003 ), Substorm‐associated large‐scale magnetic field changes in the magnetotail: A prerequisite for “magnetotail deflation” events, Ann. Geophys., 21, 869 – 879, doi: 10.5194/angeo‐21‐869‐2003.
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2006 ), Cusp latitude and the optimal solar wind coupling function, J. Geophys. Res., 111, A09207, doi: 10.1029/2006JA011731.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.