Show simple item record

Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca

dc.contributor.authorHe, Yang
dc.contributor.authorGu, Meng
dc.contributor.authorXiao, Haiyan
dc.contributor.authorLuo, Langli
dc.contributor.authorShao, Yuyan
dc.contributor.authorGao, Fei
dc.contributor.authorDu, Yingge
dc.contributor.authorMao, Scott X.
dc.contributor.authorWang, Chongmin
dc.date.accessioned2017-01-06T20:50:01Z
dc.date.available2017-07-10T14:31:42Zen
dc.date.issued2016-05-17
dc.identifier.citationHe, Yang; Gu, Meng; Xiao, Haiyan; Luo, Langli; Shao, Yuyan; Gao, Fei; Du, Yingge; Mao, Scott X.; Wang, Chongmin (2016). "Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca." Angewandte Chemie International Edition 55(21): 6244-6247.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/135051
dc.description.abstractIntercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices.The interplay between ion intercalation and WO3 battery electrode conversion was investigated at atomic scale by using in situ HRTEM. The ion–oxygen bond formation destabilizes the WO3 framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconversion
dc.subject.otherintercalation
dc.subject.otherion batteries
dc.subject.otherWO3
dc.subject.otherin situ TEM
dc.titleAtomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/1/anie201601542.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/2/anie201601542-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/3/anie201601542_am.pdf
dc.identifier.doi10.1002/anie.201601542
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceK. Qi, J. Wei, M. Sun, Q. Huang, X. Li, Z. Xu, W. Wang, X. Bai, Angew. Chem. Int. Ed. 2015, 54, 15222 – 15225; Angew. Chem. 2015, 127, 15437 – 15440.
dc.identifier.citedreference 
dc.identifier.citedreferenceS.-W. Kim, N. Pereira, N. A. Chernova, F. Omenya, P. Gao, M. S. Whittingham, G. G. Amatucci, D. Su, F. Wang, ACS Nano 2015, 9, 10076 – 10084;
dc.identifier.citedreferenceM. Langell, S. Bernasek, Phys. Rev. B 1981, 23, 1584 – 1593;
dc.identifier.citedreferenceK. He, F. Lin, Y. Zhu, X. Yu, J. Li, R. Lin, D. Nordlund, T.-C. Weng, R. M. Richards, X.-Q. Yang, M. M. Doeff, E. A. Stach, Y. Mo, H. L. Xin, D. Su, Nano Lett. 2015, 15, 5755 – 5763;
dc.identifier.citedreferenceF. Wang, H. C. Yu, M. H. Chen, L. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y. Zhu, G. G. Amatucci, J. Graetz, Nat. Commun. 2012, 3, 1201;
dc.identifier.citedreferenceK. He, Y. Zhou, P. Gao, L. Wang, N. Pereira, G. G. Amatucci, K.-W. Nam, X.-Q. Yang, Y. Zhu, F. Wang, D. Su, ACS Nano 2014, 8, 7251 – 7259.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Nie, L. Y. Gan, Y. Cheng, H. Asayesh-Ardakani, Q. Q. Li, C. Z. Dong, R. Z. Tao, F. Mashayek, H. T. Wang, U. S. Schlogl, R. F. Kile, R. S. Yassar, ACS Nano 2013, 7, 6203 – 6211;
dc.identifier.citedreferenceL. Zhong, X. H. Liu, G. F. Wang, S. X. Mao, J. Y. Huang, Phys. Rev. Lett. 2011, 106, 248302.
dc.identifier.citedreferenceL. Luo, J. Wu, J. Xu, V. P. Dravid, ACS Nano 2014, 8, 11560 – 11566.
dc.identifier.citedreferenceQ. Su, D. Xie, J. Zhang, G. Du, B. Xu, ACS Nano 2013, 7, 9115 – 9121.
dc.identifier.citedreferenceK. E. Gregorczyk, Y. Liu, J. P. Sullivan, G. W. Rubloff, ACS Nano 2013, 7, 6354 – 6360.
dc.identifier.citedreferenceL. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai, Z. L. Wang, Adv. Mater. 2007, 19, 3712 – 3716.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Zhong, J. Dahn, K. Colbow, Phys. Rev. B 1992, 46, 2554 – 2560;
dc.identifier.citedreferenceS. H. Lee, M. J. Seong, H. M. Cheong, E. Ozkan, E. C. Tracy, S. K. Deb, Solid State Ionics 2003, 156, 447 – 452;
dc.identifier.citedreference 
dc.identifier.citedreferenceS. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. Zhang, A. C. Dillon, Adv. Mater. 2008, 20, 3627 – 3632;
dc.identifier.citedreferenceW. J. Li, Z. W. Fu, Appl. Surf. Sci. 2010, 256, 2447 – 2452.
dc.identifier.citedreferenceH. Yuan, L. Jiao, J. Cao, X. Liu, M. Zhao, Y. Wang, J. Mater. Sci. Technol. 2004, 20, 41 – 45.
dc.identifier.citedreferenceY. Du, M. Gu, T. Varga, C. Wang, M. E. Bowden, S. A. Chambers, ACS Appl. Mater. Interfaces 2014, 6, 14253 – 14258.
dc.identifier.citedreferenceJ. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515 – 1520.
dc.identifier.citedreferenceY. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S. H. Lee, A. Genc, L. Pullan, J. Liu, S. X. Mao, J. G. Zhang, C. Ban, C. Wang, ACS Nano 2014, 8, 11816 – 11823.
dc.identifier.citedreferenceW. Qiang, W. Zhenhai, J. Yeonseok, C. Jiyoung, L. Kwangyeol, L. Jinghong, Nanotechnology 2006, 17, 3116.
dc.identifier.citedreferenceA. Devaraj, M. Gu, R. Colby, P. Yan, C. M. Wang, J. M. Zheng, J. Xiao, A. Genc, J. G. Zhang, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, Nat. Commun. 2015, 6, 8014.
dc.identifier.citedreferenceA. Ponrouch, C. Frontera, F. Barde, M. R. Palacin, Nat. Mater. 2015, 15, 169 – 172.
dc.identifier.citedreferenceP. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496 – 499.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.