Show simple item record

A DVH‐guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

dc.contributor.authorZarepisheh, Masoud
dc.contributor.authorLong, Troy
dc.contributor.authorLi, Nan
dc.contributor.authorTian, Zhen
dc.contributor.authorRomeijn, H. Edwin
dc.contributor.authorJia, Xun
dc.contributor.authorJiang, Steve B.
dc.date.accessioned2017-01-06T20:50:49Z
dc.date.available2017-01-06T20:50:49Z
dc.date.issued2014-06
dc.identifier.citationZarepisheh, Masoud; Long, Troy; Li, Nan; Tian, Zhen; Romeijn, H. Edwin; Jia, Xun; Jiang, Steve B. (2014). "A DVH‐guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning." Medical Physics 41(6): n/a-n/a.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135098
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Association of Physicists in Medicine
dc.subject.otherProcessor architectures; Processor configuration, e.g. pipelining
dc.subject.otherScintigraphy
dc.subject.otherAnatomy
dc.subject.otherDosimetry
dc.subject.otherMedical treatment planning
dc.subject.otherAdaptive radiation therapy
dc.subject.otherNumerical modeling
dc.subject.otherCancer
dc.subject.otherIntensity modulated radiation therapy
dc.subject.otherRadiation treatment
dc.subject.otherTherapeutic applications, including brachytherapy
dc.subject.otherDose‐volume analysis
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherNumerical optimization
dc.subject.otherbiological organs
dc.subject.otherdosimetry
dc.subject.othergraphics processing units
dc.subject.otherPareto optimisation
dc.subject.otherradiation therapy
dc.subject.otherautomatic treatment planning
dc.subject.otheradaptive radiotherapy re‐planning
dc.subject.otherintensity modulation
dc.subject.otheroptimization
dc.subject.otherPareto surface
dc.subject.otherRadiation therapy
dc.titleA DVH‐guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2117
dc.contributor.affiliationumDepartment of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2117
dc.contributor.affiliationotherDepartment of Radiation Medicine and Applied Sciences and Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, California 92037‐0843 and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390‐8542
dc.contributor.affiliationotherDepartment of Radiation Medicine and Applied Sciences and Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, California 92037‐0843
dc.contributor.affiliationotherDepartment of Radiation Medicine and Applied Sciences and Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, California 92037‐0843
dc.contributor.affiliationotherDepartment of Radiation Medicine and Applied Sciences and Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, California 92037‐0843 and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390‐8542
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135098/1/mp5700.pdf
dc.identifier.doi10.1118/1.4875700
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceS. M. Morrill, R. G. Lane, J. A. Wong, and I. I. Rosen, “ Dose‐volume considerations with linear programming optimization,” Med. Phys. 18, 1201 – 1210 ( 1991 ). 10.1118/1.596592
dc.identifier.citedreferenceM. J. Williams, M. Bailey, D. Forstner, and P. E. Metcalfe, “ Multicentre quality assurance of intensity‐modulated radiation therapy plans: A precursor to clinical trials,” Australas. Radiol. 51, 472 – 479 ( 2007 ). 10.1111/j.1440‐1673.2007.01873.x
dc.identifier.citedreferenceI. J. Das, C.‐W. Cheng, K. L. Chopra, R. K. Mitra, S. P. Srivastava, and E. Glatstein, “ Intensity‐modulated radiation therapy dose prescription, recording, and delivery: Patterns of variability among institutions and treatment planning systems,” J. Natl. Cancer Inst. 100, 300 – 307 ( 2008 ). 10.1093/jnci/djn020
dc.identifier.citedreferenceH. T. Chung, B. Lee, E. Park, J. J. Lu, and P. Xia, “ Can all centers plan intensity‐modulated radiotherapy (IMRT) effectively? an external audit of dosimetric comparisons between three‐dimensional conformal radiotherapy and IMRT for adjuvant chemoradiation for gastric cancer,” Int. J. Radiat. Oncol., Biol., Phys. 71, 1167 – 1174 ( 2008 ). 10.1016/j.ijrobp.2007.11.040
dc.identifier.citedreferenceS. Breedveld, P. R. M. Storchi, M. Keijzer, A. W. Heemink, and B. J. M. Heijmen, “ A novel approach to multi‐criteria inverse planning for IMRT,” Phys. Med. Biol. 52, 6339 – 6353 ( 2007 ). 10.1088/0031‐9155/52/20/016
dc.identifier.citedreferenceS. Breedveld, P. R. M. Storchi, and B. J. M. Heijmen, “ The equivalence of multi‐criteria methods for radiotherapy plan optimization,” Phys. Med. Biol. 54, 7199 – 7209 ( 2009 ). 10.1088/0031‐9155/54/23/011
dc.identifier.citedreferenceS. Breedveld, P. R. M. Storchi, P. W. J. Voet, and B. J. M. Heijmen, “ iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans,” Med. Phys. 39, 951 – 963 ( 2012 ). 10.1118/1.3676689
dc.identifier.citedreferenceP. W. J. Voet, M. L. P. Dirkx, S. Breedveld, D. Fransen, P. C. Levendag, and B. J. M. Heijmen, “ Toward fully automated multicriterial plan generation: A prospective clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 85, 866 – 872 ( 2013 ). 10.1016/j.ijrobp.2012.04.015
dc.identifier.citedreferenceX. Zhang, X. Li, E. M. Quan, X. Pan, and Y. Li, “ A methodology for automatic intensity‐modulated radiation treatment planning for lung cancer,” Phys. Med. Biol. 56, 3873 – 3893 ( 2011 ). 10.1088/0031‐9155/56/13/009
dc.identifier.citedreferenceV. Chanyavanich, S. K. Das, W. R. Lee, and J. Y. Lo, “ Knowledge‐based IMRT treatment planning for prostate cancer,” Med. Phys. 38, 2515 – 2522 ( 2011 ). 10.1118/1.3574874
dc.identifier.citedreferenceB. Wu, F. Ricchetti, G. Sanguineti, M. Kazhdan, P. Simari, R. Jacques, R. Taylor, and T. McNutt, “ Data‐driven approach to generating achievable dose–volume histogram objectives in intensity‐modulated radiotherapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 79, 1241 – 1247 ( 2011 ). 10.1016/j.ijrobp.2010.05.026
dc.identifier.citedreferenceD. Yan, F. Vicini, J. Wong, and A. Martinez, “ Adaptive radiation therapy,” Phys. Med. Biol. 42, 123 – 132 ( 1997 ). 10.1088/0031‐9155/42/1/008
dc.identifier.citedreferenceR. Mohan, X. Zhang, H. Wang, Y. Kang, X. Wang, H. Liu, K. K. Ang, D. Kuban, and L. Dong, “ Use of deformed intensity distributions for on‐line modification of image‐guided IMRT to account for interfractional anatomic changes,” Int. J. Radiat. Oncol., Biol., Phys. 61, 1258 – 1266 ( 2005 ). 10.1016/j.ijrobp.2004.11.033
dc.identifier.citedreferenceL. E. Court, L. Dong, A. K. Lee, R. Cheung, M. D. Bonnen, J. O’Daniel, H. Wang, R. Mohan, and D. Kuban, “ An automatic CT‐guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer,” Int. J. Radiat. Oncol., Biol., Phys. 62, 154 – 163 ( 2005 ). 10.1016/j.ijrobp.2004.09.045
dc.identifier.citedreferenceY. Feng, C. Castro‐Pareja, R. Shekhar, and C. Yu, “ Direct aperture deformation: An interfraction image guidance strategy,” Med. Phys. 33, 4490 – 4498 ( 2006 ). 10.1118/1.2374675
dc.identifier.citedreferenceL. E. Court, R. B. Tishler, J. Petit, R. Cormack, and L. Chin, “ Automatic online adaptive radiation therapy techniques for targets with significant shape change: A feasibility study,” Phys. Med. Biol. 51, 2493 – 2501 ( 2006 ). 10.1088/0031‐9155/51/10/009
dc.identifier.citedreferenceA. Mestrovic, M.‐P. Milette, A. Nichol, B. G. Clark, and K. Otto, “ Direct aperture optimization for online adaptive radiation therapy,” Med. Phys. 34, 1631 – 1646 ( 2007 ). 10.1118/1.2719364
dc.identifier.citedreferenceE. E. Ahunbay, C. Peng, G.‐P. Chen, S. Narayanan, C. Yu, C. Lawton, and X. A. Li, “ An on‐line replanning scheme for interfractional variations,” Med. Phys. 35, 3607 – 3615 ( 2008 ). 10.1118/1.2952443
dc.identifier.citedreferenceE. E. Ahunbay, C. Peng, A. Godley, C. Schultz, and X. A. Li, “ An on‐line replanning method for head and neck adaptive radiotherapy,” Med. Phys. 36, 4776 – 4790 ( 2009 ). 10.1118/1.3215532
dc.identifier.citedreferenceQ. J. Wu, D. Thongphiew, Z. Wang, B. Mathayomchan, V. Chankong, S. Yoo, W. R. Lee, and F.‐F. Yin, “ On‐line re‐optimization of prostate IMRT plans for adaptive radiation therapy,” Phys. Med. Biol. 53, 673 – 691 ( 2008 ). 10.1088/0031‐9155/53/3/011
dc.identifier.citedreferenceC. Men, X. Jia, and S. B. Jiang, “ GPU‐based ultra‐fast direct aperture optimization for online adaptive radiation therapy,” Phys. Med. Biol. 55, 4309 – 4319 ( 2010 ). 10.1088/0031‐9155/55/15/008
dc.identifier.citedreferenceM. Langer and J. Leong, “ Optimization of beam weights under dose‐volume restrictions,” Int. J. Radiat. Oncol., Biol., Phys. 13, 1255 – 1260 ( 1987 ). 10.1016/0360‐3016(87)90203‐3
dc.identifier.citedreferenceM. Langer, R. Brown, M. Urie, J. Leong, M. Stracher, and J. Shapiro, “ Large scale optimization of beam weights under dose‐volume restrictions,” Int. J. Radiat. Oncol., Biol., Phys. 18, 887 – 893 ( 1990 ). 10.1016/0360‐3016(90)90413‐E
dc.identifier.citedreferenceY. Censor, M. D. Altschuler, and W. D. Powlis, “ On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning,” Inverse Probl. 4, 607 – 623 ( 1988 ). 10.1088/0266‐5611/4/3/006
dc.identifier.citedreferenceP. S. Cho, S. Lee, R. J. M. Ii, S. Oh, S. G. Sutlief, and M. H. Phillips, “ Optimization of intensity modulated beams with volume constraints using two methods: Cost function minimization and projections onto convex sets,” Med. Phys. 25, 435 – 443 ( 1998 ). 10.1118/1.598218
dc.identifier.citedreferenceS. V. Spirou and C. S. Chui, “ A gradient inverse planning algorithm with dose‐volume constraints,” Med. Phys. 25, 321 – 321 ( 1998 ). 10.1118/1.598202
dc.identifier.citedreferenceD. Michalski, Y. Xiao, Y. Censor, and J. M. Galvin, “ The dose–volume constraint satisfaction problem for inverse treatment planning with field segments,” Phys. Med. Biol. 49, 601 – 616 ( 2004 ). 10.1088/0031‐9155/49/4/010
dc.identifier.citedreferenceH. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar, “ A new linear programming approach to radiation therapy treatment planning problems,” Operations Res. 54, 201 – 216 ( 2006 ). 10.1287/opre.1050.0261
dc.identifier.citedreferenceY. Zhang and M. Merritt, “ Dose‐volume‐based IMRT fluence optimization: A fast least‐squares approach with differentiability,” Linear Algebra Appl. 428, 1365 – 1387 ( 2008 ). 10.1016/j.laa.2007.09.037
dc.identifier.citedreferenceM. Zarepisheh, M. Shakourifar, G. Trigila, P. S. Ghomi, S. Couzens, A. Abebe, L. Noreña, W. Shang, S. B. Jiang, and Y. Zinchenko, “ A moment‐based approach for DVH‐guided radiotherapy treatment plan optimization,” Phys. Med. Biol. 58, 1869 – 1887 ( 2013 ). 10.1088/0031‐9155/58/6/1869
dc.identifier.citedreferenceC. Cotrutz and L. Xing, “ Using voxel‐dependent importance factors for interactive DVH‐based dose optimization,” Phys. Med. Biol. 47, 1659 – 1669 ( 2002 ). 10.1088/0031‐9155/47/10/304
dc.identifier.citedreferenceC. Cotrutz and L. Xing, “ IMRT dose shaping with regionally variable penalty scheme,” Med. Phys. 30, 544 – 544 ( 2003 ). 10.1118/1.1556610
dc.identifier.citedreferenceC. Wu, G. H. Olivera, R. Jeraj, H. Keller, and T. R. Mackie, “ Treatment plan modification using voxel‐based weighting factors/dose prescription,” Phys. Med. Biol. 48, 2479 – 2491 ( 2003 ). 10.1088/0031‐9155/48/15/315
dc.identifier.citedreferenceY. Yang and L. Xing, “ Inverse treatment planning with adaptively evolving voxel‐dependent penalty scheme,” Med. Phys. 31, 2839 – 2839 ( 2004 ). 10.1118/1.1799311
dc.identifier.citedreferenceZ. Shou, Y. Yang, C. Cotrutz, D. Levy, and L. Xing, “ Quantitation of the a priori dosimetric capabilities of spatial points in inverse planning and its significant implication in defining IMRT solution space,” Phys. Med. Biol. 50, 1469 – 1482 ( 2005 ). 10.1088/0031‐9155/50/7/010
dc.identifier.citedreferenceC. Holdsworth, M. Kim, J. Liao, and M. Phillips, “ The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans,” Med. Phys. 39, 2261 – 2274 ( 2012 ). 10.1118/1.3697535
dc.identifier.citedreferenceN. Li, M. Zarepisheh, A. Uribe‐Sanchez, K. Moore, Z. Tian, X. Zhen, Y. J. Graves, Q. Gautier, L. Mell, L. Zhou, X. Jia, and S. Jiang, “ Automatic treatment plan re‐optimization for adaptive radiotherapy guided with the initial plan DVHs,” Phys. Med. Biol. 58, 8725 – 8738 ( 2013 ). 10.1088/0031‐9155/58/24/8725
dc.identifier.citedreferenceM. Zarepisheh, A. Uribe‐Sanchez, N. Li, X. Jia, and S. Jiang, “ A multi‐criteria framework with voxel‐dependent parameters for radiotherapy treatment plan optimization,” Med. Phys. 41, 041705 (10pp.) ( 2014 ). 10.1118/1.4866886
dc.identifier.citedreferenceH. E. Romeijn, J. F. Dempsey, and J. G. Li, “ A unifying framework for multi‐criteria fluence map optimization models,” Phys. Med. Biol. 49, 1991 – 2013 ( 2004 ). 10.1088/0031‐9155/49/10/011
dc.identifier.citedreferenceA. L. Hoffmann, D. den Hertog, A. Y. D. Siem, J. H. A. M. Kaanders, and H. Huizenga, “ Convex reformulation of biologically‐based multi‐criteria intensity‐modulated radiation therapy optimization including fractionation effects,” Phys. Med. Biol. 53, 6345 – 6362 ( 2008 ). 10.1088/0031‐9155/53/22/006
dc.identifier.citedreferenceD. Craft, T. Halabi, and T. Bortfeld, “ Exploration of tradeoffs in intensity‐modulated radiotherapy,” Phys. Med. Biol. 50, 5857 – 5857 ( 2005 ). 10.1088/0031‐9155/50/24/007
dc.identifier.citedreferenceM. L. Kessler, D. L. McShan, M. A. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Lawrence, and B. A. Fraass, “ Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans,” Optim. Eng. 6, 421 – 448 ( 2005 ). 10.1007/s11081‐005‐2066‐2
dc.identifier.citedreferenceP. Xia, N. Yu, L. Xing, X. Sun, and L. J. Verhey, “ Investigation of using a power function as a cost function in inverse planning optimization,” Med. Phys. 32, 920 – 920 ( 2005 ). 10.1118/1.1872552
dc.identifier.citedreferenceM. Ehrgott, Multicriteria optimization ( Springer Verlag, Berlin, 2005 ).
dc.identifier.citedreferenceM. Zarepisheh and E. Khorram, “ On the transformation of lexicographic nonlinear multiobjective programs to single objective programs,” Math. Methods Operations Res. 74, 217 – 231 ( 2011 ). 10.1007/s00186‐011‐0360‐7
dc.identifier.citedreferenceM. Karimi, N. Li, M. Zarepisheh, L. Cervino, X. Jia, K. Moore, and S. Jiang, “ Selecting reference patients for automatic treatment planning using multiple geometrical features,” Med. Phys. 40, 379 ( 2013 ) (Abstract). 10.1118/1.4815180
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.