Show simple item record

3D Jet Writing - Controlled Deposition of Multicomponent Electrospun Fibers in Three Dimensional Space.

dc.contributor.authorJordahl, Jacob
dc.date.accessioned2017-01-26T22:17:41Z
dc.date.available2018-02-01T14:56:11Zen
dc.date.issued2016
dc.date.submitted2016
dc.identifier.urihttps://hdl.handle.net/2027.42/135748
dc.description.abstractElectrospinning is a fiber fabrication technique which has potential use in applications ranging from filters and sensors to regenerative medicine. Generation of multi-component fibers and particles is possible through the use of a technique called electrohydrodynamic co-jetting. Despite the many applications, the process suffers from two main limiting factors. First, the reliance on a bicompartmental fluid interface inherently limits the scalability of the system. Secondly, the random fiber placement resulting from a process instability leads to limited pore sizes and uncontrollable 3D architectures. Herein, both of these factors are addressed independently. Scalability was addressed by creating a device which creates an extended fluid interface composed of two polymer solutions. This method was shown to produce bicompartmental fibers and particles at throughputs in excess of 30 times greater than traditional methods while retaining consistent fiber size distributions. Next, a method of completely eliminating the whipping instabilities associated with the electrospinning process, called 3D jet writing, was shown to be capable of perfectly stacking of fibers on top of one another. This process utilizes radially directed electric fields to dampen the formation of whipping instabilities, and a moving collection electrode to produce 3D fiber geometries. Deposition of fiber lines within approximately 15 µm is achieved using this system, making direct writing of fiber stacks within 0.3° of perfectly parallel, and 1.1° of perpendicular, and fabrication of three-dimensional scaffolds with regular tessellated prismatic pore architectures possible with this technique. The precision afforded by this technique was used to create 3D high-density stem cell culture environments which contain up to 1.4 million cells/mm3 polymer material, with 96% of the scaffold volume consisting of open area for 3D cell growth. These scaffolds allow for 3D cell culture to be tessellated across large areas, addressing common limitations associated with other 3D culture techniques. When differentiated osteogenically, stem cell microtissues can promote healing of calvarial defects in mice, producing on average over three times the new bone volume compared to the control groups. Similar tessellated differentiated stem cell microtissues were also able to simulate a diseased tissue by promoting metastasis in anomalous anatomic sites in 5/5 cases.
dc.language.isoen_US
dc.subjectpatterned electrospinning
dc.subjectmulticomponent polymer microfibers
dc.subjectneedle-less electrospinning
dc.subjectTissue Engineering
dc.subjectdiseased tissue model
dc.title3D Jet Writing - Controlled Deposition of Multicomponent Electrospun Fibers in Three Dimensional Space.
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberLahann, Joerg
dc.contributor.committeememberLuker, Gary D
dc.contributor.committeememberKrebsbach, Paul H
dc.contributor.committeememberLarson, Ronald G
dc.contributor.committeememberSolomon, Michael J
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135748/1/jjordahl_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.