Show simple item record

DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching

dc.contributor.authorPowell, John T.
dc.contributor.authorAkhuetie‐oni, Benjamin O.
dc.contributor.authorZhang, Zhao
dc.contributor.authorLin, Chenxiang
dc.date.accessioned2017-06-16T20:10:19Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09-12
dc.identifier.citationPowell, John T.; Akhuetie‐oni, Benjamin O. ; Zhang, Zhao; Lin, Chenxiang (2016). "DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching." Angewandte Chemie International Edition 55(38): 11412-11416.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137326
dc.description.abstractMechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structureâ switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.A new set of threads: Rotaxanes with a length of up to 200â nm were assembled by a DNA origami approach. The threaded macrocycles can be programmably docked at either dumbbell stopper, and the assemblies can be reconfigured to generate new, otherwise unfavorable rotaxane topologies.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermolecular devices
dc.subject.otherDNA origami
dc.subject.otherDNA nanotechnology
dc.subject.otherrotaxanes
dc.subject.othermacrocycles
dc.titleDNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137326/1/anie201604621_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137326/2/anie201604621-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137326/3/anie201604621.pdf
dc.identifier.doi10.1002/anie.201604621
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceY. Ke, T. Meyer, W. M. Shih, G. Bellot, Nat. Commun. 2016, 7, 10935;
dc.identifier.citedreferenceY. R. Yang, Y. Liu, H. Yan, Bioconjugate Chem. 2015, 26, 1381 â 1395.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Ackermann, S. S. Jester, M. Famulok, Angew. Chem. Int. Ed. 2012, 51, 6771 â 6775; Angew. Chem. 2012, 124, 6875 â 6879;
dc.identifier.citedreferenceD. Ackermann, T. L. Schmidt, J. S. Hannam, C. S. Purohit, A. Heckel, M. Famulok, Nat. Nanotechnol. 2010, 5, 436 â 442;
dc.identifier.citedreferenceJ. Valero, F. Lohmann, D. Keppner, M. Famulok, ChemBioChem 2016, 17, 1146;
dc.identifier.citedreferenceJ. Weigandt, C. L. Chung, S. S. Jester, M. Famulok, Angew. Chem. Int. Ed. 2016, 55, 5512 â 5516; Angew. Chem. 2016, 128, 5602 â 5606.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. S. Andersen etâ al., Nature 2009, 459, 73 â 76;
dc.identifier.citedreferenceS. M. Douglas, I. Bachelet, G. M. Church, Science 2012, 335, 831 â 834;
dc.identifier.citedreferenceP. Ketterer, E. M. Willner, H. Dietz, Sci. Adv. 2016, 2, e 1501209;
dc.identifier.citedreferenceA. E. Marras, L. Zhou, H. J. Su, C. E. Castro, Proc. Natl. Acad. Sci. USA 2015, 112, 713 â 718.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Gerling, K. F. Wagenbauer, A. M. Neuner, H. Dietz, Science 2015, 347, 1446 â 1452;
dc.identifier.citedreferenceS. Woo, P. W. Rothemund, Nat. Chem. 2011, 3, 620 â 627.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W. M. Shih, Nature 2009, 459, 414 â 418;
dc.identifier.citedreferenceP. W. Rothemund, Nature 2006, 440, 297 â 302.
dc.identifier.citedreferenceS. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Nucleic Acids Res. 2009, 37, 5001 â 5006.
dc.identifier.citedreferenceT. Liedl, B. Hogberg, J. Tytell, D. E. Ingber, W. M. Shih, Nat. Nanotechnol. 2010, 5, 520 â 524.
dc.identifier.citedreferenceD. Y. Zhang, G. Seelig, Nat. Chem. 2011, 3, 103 â 113.
dc.identifier.citedreferenceE. M. Sevick, D. R. Williams, Nano. Lett. 2016, 16, 671 â 674.
dc.identifier.citedreferenceJ. List, E. Falgenhauer, E. Kopperger, G. Pardatscher, F. C. Simmel, Nat. Commun. 2016, 7, 12414.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Cheng, J. F. Stoddart, ChemPhysChem 2016, 17, 1780 â 1793;
dc.identifier.citedreferenceX. Liu, C. H. Lu, I. Willner, Acc. Chem. Res. 2014, 47, 1673 â 1680;
dc.identifier.citedreferenceC. H. Lu, A. Cecconello, I. Willner, J. Am. Chem. Soc. 2016, 138, 5172 â 5185;
dc.identifier.citedreferenceC. A. Schalley, K. Beizai, F. Vogtle, Acc. Chem. Res. 2001, 34, 465 â 476.
dc.identifier.citedreferenceI. T. Harrison, S. Harrison, J. Am. Chem. Soc. 1967, 89, 5723 â 5724.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. Lohmann, D. Ackermann, M. Famulok, J. Am. Chem. Soc. 2012, 134, 11884 â 11887;
dc.identifier.citedreferenceF. Lohmann, J. Weigandt, J. Valero, M. Famulok, Angew. Chem. Int. Ed. 2014, 53, 10372 â 10376; Angew. Chem. 2014, 126, 10540 â 10544;
dc.identifier.citedreferenceP. Waeles, B. Riss-Yaw, F. Coutrot, Chem. Eur. J. 2016, 22, 6837 â 6845.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. R. Jones, N. C. Seeman, C. A. Mirkin, Science 2015, 347, 1260901;
dc.identifier.citedreferenceB. Saccà, C. M. Niemeyer, Chem. Soc. Rev. 2011, 40, 5910 â 5921;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.