Show simple item record

Magnetic N‐Enriched Fe3C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction

dc.contributor.authorWang, Xiaobai
dc.contributor.authorZhang, Peng
dc.contributor.authorWang, Wei
dc.contributor.authorLei, Xiang
dc.contributor.authorYang, Hua
dc.date.accessioned2017-06-16T20:10:52Z
dc.date.available2017-06-16T20:10:52Z
dc.date.issued2016-03-24
dc.identifier.citationWang, Xiaobai; Zhang, Peng; Wang, Wei; Lei, Xiang; Yang, Hua (2016). "Magnetic N‐Enriched Fe3C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction." Chemistry – A European Journal 22(14): 4863-4869.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137352
dc.description.abstractA series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route. In the synthetic procedure, aniline and acetonitrile are simultaneously used as the carbon and nitrogen source. The effect of calcination temperature on the structural and functional properties of the materials is investigated. Magnetic measurement shows that the sample prepared at 800 °C (Fe3C/C‐N800 NPs) possesses the highest Ms value of 77.2 emu g−1. On testing as oxygen reduction reaction (ORR) catalysts, the sample prepared at 750 °C (Fe3C/C‐N750 NPs) shows the best ORR performance among the series, with a more positive onset potential (+0.99 V vs. RHE), higher selectivity (number of electron transfer n≈3.93), longer durability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 m KOH solution. Moreover, in acidic solution, the excellent ORR activity and stability are also exhibited.Magnetic nanomaterials: A series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route (see figure). The materials exhibit excellent magnetic properties and oxygen reduction reaction (ORR) activities.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetic properties
dc.subject.otherfuel cells
dc.subject.othernanomaterials
dc.subject.othernitrogen
dc.subject.otherreduction
dc.titleMagnetic N‐Enriched Fe3C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137352/1/chem201505138_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137352/2/chem201505138-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137352/3/chem201505138.pdf
dc.identifier.doi10.1002/chem.201505138
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 2014, 53, 3675 – 3679; Angew. Chem. 2014, 126, 3749 – 3753;
dc.identifier.citedreferenceG. Zhong, H. Wang, H. Yu, F. Peng, J. Power Sources 2015, 286, 495 – 503.
dc.identifier.citedreferenceS. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Energy Environ. Sci. 2015, 8, 221 – 229.
dc.identifier.citedreferenceG. Liu, X. Li, J.-W. Lee, B. N. Popov, Catal. Sci. Technol. 2011, 1, 207 – 217;
dc.identifier.citedreferenceX. Zhou, Z. Yang, H. Nie, Z. Yao, L. Zhang, S. Huang, J. Power Sources 2011, 196, 9970 – 9974.
dc.identifier.citedreferenceF. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126 – 1130.
dc.identifier.citedreferenceX. Wang, P. Zhang, J. Gao, X. Chen, H. Yang, Dyes Pigments 2015, 112, 305 – 310.
dc.identifier.citedreferenceX. Wang, P. Zhang, W. Wang, X. Lei, B. Zou, H. Yang, RSC Adv. 2015, 5, 27857 – 27861.
dc.identifier.citedreferenceJ. W. Chevalier, J. Y. Bergeron, L. H. Dao, Macromolecules 1992, 25, 3325 – 3331.
dc.identifier.citedreferenceM. I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J. P. Buisson, A. Monkman, S. Lefrant, J. Phys. Chem. B 1998, 102, 7382 – 7392.
dc.identifier.citedreferenceZ. Schnepp, S. C. Wimbush, M. Antonietti, C. Giordano, Chem. Mater. 2010, 22, 5340 – 5344.
dc.identifier.citedreferenceW.-J. Liu, K. Tian, Y.-R. He, H. Jiang, H.-Q. Yu, Environ. Sci. Technol. 2014, 48, 13951 – 13959.
dc.identifier.citedreferenceW. Yang, X. Yue, X. Liu, J. Zhai, J. Jia, Nanoscale 2015, 7, 11956 – 11961.
dc.identifier.citedreferenceW. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, J. Am. Chem. Soc. 2015, 137, 5555 – 5562.
dc.identifier.citedreferenceP. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge, W.-J. Yuan, Y.-H. Shen, A.-J. Xie, S.-H. Yu, Energy Environ. Sci. 2014, 7, 4095 – 4103.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Zheng, J. Deng, N. Wang, D. Deng, W. H. Zhang, X. Bao, C. Li, Angew. Chem. Int. Ed. 2014, 53, 7023 – 7027; Angew. Chem. 2014, 126, 7143 – 7147;
dc.identifier.citedreferenceH. T. Chung, J. H. Won, P. Zelenay, Nat. Commun. 2013, 4, 1922.
dc.identifier.citedreferenceY. Hu, J. O. Jensen, W. Zhang, Y. Huang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li, ChemSusChem 2014, 7, 2099 – 2103.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. K. Debe, Nature 2012, 486, 43 – 51;
dc.identifier.citedreferenceB. C. Steele, A. Heinzel, Nature 2001, 414, 345 – 352.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, Chem. Rev. 2015, 115, 3433 – 3467;
dc.identifier.citedreferenceA. Chen, P. Holt-Hindle, Chem. Rev. 2010, 110, 3767 – 3804;
dc.identifier.citedreferenceS. E. Kleijn, S. Lai, M. Koper, P. R. Unwin, Angew. Chem. Int. Ed. 2014, 53, 3558 – 3586; Angew. Chem. 2014, 126, 3630 – 3660;
dc.identifier.citedreferenceC. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, J. Am. Chem. Soc. 2007, 129, 6974 – 6975;
dc.identifier.citedreferenceS. Guo, S. Zhang, S. Sun, Angew. Chem. Int. Ed. 2013, 52, 8526 – 8544; Angew. Chem. 2013, 125, 8686 – 8705;
dc.identifier.citedreferenceS. Sun, Z. Jusys, R. J. Behm, J. Power Sources 2013, 231, 122 – 133;
dc.identifier.citedreferenceX. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, J. Power Sources 2013, 232, 310 – 322.
dc.identifier.citedreference 
dc.identifier.citedreferenceX. Zhao, S. Chen, Z. Fang, J. Ding, W. Sang, Y. Wang, J. Zhao, Z. Peng, J. Zeng, J. Am. Chem. Soc. 2015, 137, 2804 – 2807;
dc.identifier.citedreferenceW. Wang, Y. Zhao, Y. Ding, Nanoscale 2015, 7, 11934 – 11939.
dc.identifier.citedreferenceW. Xia, J. Masa, M. Bron, W. Schuhmann, M. Muhler, Electrochem. Commun. 2011, 13, 593 – 596.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114 – 130;
dc.identifier.citedreferenceZ. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 2011, 4, 3167 – 3192;
dc.identifier.citedreferenceH. Yuan, Y. Hou, Z. Wen, X. Guo, J. Chen, Z. He, ACS Appl. Mater. Interfaces 2015, 7, 18672 – 18678.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443 – 447;
dc.identifier.citedreferenceY. Hu, J. O. Jensen, W. Zhang, S. Martin, R. Chenitz, C. Pan, W. Xing, N. J. Bjerrum, Q. Li, J. Mater. Chem. A 2015, 3, 1752 – 1760;
dc.identifier.citedreferenceJ. Wang, G. Wang, S. Miao, X. Jiang, J. Li, X. Bao, Carbon 2014, 75, 381 – 389;
dc.identifier.citedreferenceS. Chao, Q. Cui, K. Wang, Z. Bai, L. Yang, J. Qiao, J. Power Sources 2015, 288, 128 – 135;
dc.identifier.citedreferenceA. Muthukrishnan, Y. Nabae, C. W. Chang, T. Okajima, T. Ohsaka, Catal. Sci. Technol. 2015, 5, 1764 – 1774.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Daems, X. Sheng, I. F. J. Vankelecom, P. P. Pescarmona, J. Mater. Chem. A 2014, 2, 4085 – 4110;
dc.identifier.citedreferenceQ. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho, G. Wu, Small 2015, 11, 1443 – 1452;
dc.identifier.citedreferenceW.-B. Luo, S.-L. Chou, J.-Z. Wang, Y.-C. Zhai, H.-K. Liu, Small 2015, 11, 2817 – 2824;
dc.identifier.citedreferenceA. Zehtab Yazdi, K. Chizari, A. S. Jalilov, J. Tour, U. Sundararaj, ACS Nano 2015, 9, 5833 – 5845.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Kim, D.-H. Nam, H.-Y. Park, C. Kwon, K. Eom, S. Yoo, J. Jang, H.-J. Kim, E. Cho, H. Kwon, J. Mater. Chem. A 2015, 3, 14284 – 14290;
dc.identifier.citedreferenceZ. Lu, G. Xu, C. He, T. Wang, L. Yang, Z. Yang, D. Ma, Carbon 2015, 84, 500 – 508;
dc.identifier.citedreferenceM. Li, X. Bo, Y. Zhang, C. Han, A. Nsabimana, L. Guo, J. Mater. Chem. A 2014, 2, 11672 – 11682.
dc.identifier.citedreferenceY. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Adv. Energy Mater. 2014, 4, 1400337.
dc.identifier.citedreferenceW. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137, 1436 – 1439.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.