Show simple item record

Rechargeable Metal–Air Proton‐Exchange Membrane Batteries for Renewable Energy Storage

dc.contributor.authorNagao, Masahiro
dc.contributor.authorKobayashi, Kazuyo
dc.contributor.authorYamamoto, Yuta
dc.contributor.authorYamaguchi, Togo
dc.contributor.authorOogushi, Akihide
dc.contributor.authorHibino, Takashi
dc.date.accessioned2017-06-16T20:12:49Z
dc.date.available2017-06-16T20:12:49Z
dc.date.issued2016-02
dc.identifier.citationNagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi (2016). "Rechargeable Metal–Air Proton‐Exchange Membrane Batteries for Renewable Energy Storage." ChemElectroChem 3(2): 247-255.
dc.identifier.issn2196-0216
dc.identifier.issn2196-0216
dc.identifier.urihttps://hdl.handle.net/2027.42/137429
dc.description.abstractRechargeable proton‐exchange membrane batteries that employ organic chemical hydrides as hydrogen‐storage media have the potential to serve as next‐generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen‐storage capacity. Here, we address this challenge through the use of metal‐ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7‐based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V4+/V3+, V3+/V2+, and Sn4+/Sn2+ redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g−1 for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.Positive exchange: A proton‐exchange membrane fuel cell is integrated with active anode materials including vanadium and tin ions, for which redox reactions occur at more positive potentials than for hydrogen reduction. These redox couples are demonstrated to function as promising energy‐storage media with excellent reversibility and good cyclability.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbatteries
dc.subject.otherfuel cells
dc.subject.otherenergy storage
dc.subject.otherredox chemistry
dc.subject.otherproton-exchange membranes
dc.titleRechargeable Metal–Air Proton‐Exchange Membrane Batteries for Renewable Energy Storage
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137429/1/celc201500473-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137429/2/celc201500473.pdf
dc.identifier.doi10.1002/celc.201500473
dc.identifier.sourceChemElectroChem
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Kötz, M. Carlen, Electrochim. Acta 2000, 45, 2483 – 2498;
dc.identifier.citedreferenceL. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520 – 2531;
dc.identifier.citedreferenceT. Hibino, K. Kobayashi, M. Nagao, S. Kawasaki, Sci. Rep. 2015, 5, 7903.
dc.identifier.citedreferenceD. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
dc.identifier.citedreferenceZ. Zhang, M. G. Lussier, D. J. Miller, Carbon 2000, 38, 1289 – 1296.
dc.identifier.citedreferenceB. Sun, M. Skyllas-Kazacos, Electrochim. Acta 1992, 37, 1253 – 1260;
dc.identifier.citedreferenceW. Li, J. Liu, C. Yan, Carbon 2013, 55, 313 – 320.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Pantea, H. Darmstadt, S. Kaliaguine, L. Sümmchen, C. Roy, Carbon 2001, 39, 1147 – 1158;
dc.identifier.citedreferenceD. Sebastián, I. Suelves, R. Moliner, M. J. Lázaro, Carbon 2010, 48, 4421 – 4431.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Kötz, S. Stucki, D. Scherson, D. M. Kolb, J. Electroanal. Chem. 1984, 172, 211 – 219;
dc.identifier.citedreferenceN. Mamaca, E. Mayousse, S. Arrii-Clacens, T. W. Napporn, K. Servat, N. Guillet, K. B. Kokoh, Appl. Catal. B 2012, 111, 376 – 380.
dc.identifier.citedreferenceH. Y. H. Chan, C. C. Takoudis, M. J. Weaver, J. Catal. 1997, 172, 336 – 345.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. L. Wang, D. Xu, J. J. Xu, X. B. Zhang, Chem. Soc. Rev. 2014, 43, 7746 – 7786;
dc.identifier.citedreferenceH. Zhong, J. Wang, Y. Zhang, W. Xu, W. Xing, D. Xu, Y. Zhang, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235 – 14239; Angew. Chem. 2014, 126, 14459 – 14463;
dc.identifier.citedreferenceJ. Wang, K. Li, H. Zhong, D. Xu, Z. Wang, Z. Jiang, Z. Wu, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 10530 – 10534; Angew. Chem. 2014, 127, 10676 – 10680.
dc.identifier.citedreference 
dc.identifier.citedreferenceO. Paschos, J. Kunze, U. Stimming, F. Maglia, J. Phys. Condens. Matter 2011, 23, 234110 – 234136;
dc.identifier.citedreferenceT. Hibino, J. Ceram. Soc. Jpn. 2011, 119, 677 – 686;
dc.identifier.citedreferenceK. Scott, C. Xu, X. Wu, WIREs Energy Environ. 2014, 3, 24 – 41.
dc.identifier.citedreferenceH. P. Boehm, Carbon 1994, 32, 759 – 769.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. Agbossou, R. Chahine, J. Hamelin, F. Laurencelle, A. Anouar, J. M. St-Arnaud, T. K. Bose, J. Power Sources 2001, 96, 168 – 172;
dc.identifier.citedreferenceE. I. Zoulias, N. Lymberopoulos, Renewable Energy 2007, 32, 680 – 696;
dc.identifier.citedreferenceA. Yilanci, I. Dincer, H. K. Ozturk, Prog. Energy Combust. Sci. 2009, 35, 231 – 244;
dc.identifier.citedreferenceS. Park, Y. Shao, J. Liu, Y. Wang, Energy Environ. Sci. 2012, 5, 9331 – 9344;
dc.identifier.citedreferenceA. Goñi-Urtiaga, D. Presvytes, K. Scott, Int. J. Hydrogen Energy 2012, 37, 3358 – 3372.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Baldwin, M. Pham, A. Leonida, J. McElroy, T. Nalette, J. Power Sources 1990, 29, 399 – 412;
dc.identifier.citedreferenceF. Mitlitsky, B. Myers, A. H. Weisberg, Energy Fuels 1998, 12, 56 – 71;
dc.identifier.citedreferenceT. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, J. Power Sources 2002, 112, 583 – 587.
dc.identifier.citedreferenceM. Perrin, Y. M. Saint-Drenan, F. Mattera, P. Malbranche, J. Power Sources 2005, 144, 402 – 410.
dc.identifier.citedreference 
dc.identifier.citedreferenceU. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608 – 6630; Angew. Chem. 2009, 121, 6732 – 6757;
dc.identifier.citedreferenceJ. Graetz, Chem. Soc. Rev. 2009, 38, 73 – 82.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Kariya, A. Fukuoka, M. Ichikawa, Phys. Chem. Chem. Phys. 2006, 8, 1724 – 1730;
dc.identifier.citedreferenceM. Nagao, K. Kobayashi, Y. Yamamoto, T. Hibino, J. Electrochem. Soc. 2015, 162, F 410 –F 418;
dc.identifier.citedreferenceK. Kobayashi, M. Nagao, Y. Yamamoto, P. Heo, T. Hibino, J. Electrochem. Soc. 2015, 162, F 868 –F 877.
dc.identifier.citedreferenceJ. Revenga, F. Rodriguez, J. Tijero, J. Electrochem. Soc. 1994, 141, 330 – 333.
dc.identifier.citedreferenceE. Fuente, J. A. Menendez, D. Suarez, M. A. Montes-Morán, Langmuir 2003, 19, 3505 – 3511.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Ohashi, T. Aida, J. Tsunetsugu, J. Mol. Struct. 1994, 324, 75 – 82;
dc.identifier.citedreferenceH. A. Andreas, B. E. Conway, Electrochim. acta 2006, 51, 6510 – 6520.
dc.identifier.citedreferenceZ. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Elsevier, Oxford, 2006, pp.  281 – 304.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Iwahara, T. Yajima, T. Hibino, H. Ushida, J. Electrochem. Soc. 1993, 140, 1687 – 1691;
dc.identifier.citedreferenceP. Heo, H. Shibata, M. Nagao, T. Hibino, M. Sano, J. Electrochem. Soc. 2006, 153, A 897 –A 901;
dc.identifier.citedreferenceK. Genzaki, P. Heo, M. Sano, T. Hibino, J. Electrochem. Soc. 2009, 156, B 806 –B 810.
dc.identifier.citedreferenceD. K. Gosser, Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism, Wiley VCH, New York, 1994.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Damjanovic, A. Dey, J. O. M. Bockris, J. Electrochem. Soc. 1966, 113, 739 – 746;
dc.identifier.citedreferenceS. Gottesfeld, S. Srinivasan, J. Electroanal. Chem. 1978, 86, 89 – 104;
dc.identifier.citedreferenceG. Lodi, E. Sivieri, A. Debattisti, S. Trasatti, J. Appl. Electrochem. 1978, 8, 135 – 143.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Y. Lee, K. Liang, K. H. An, Y. H. Lee, Synth. Met. 2005, 150, 153 – 157;
dc.identifier.citedreferenceD. Lee, J. Y. Jung, M. J. Jung, Y. S. Lee, Chem. Eng. J. 2015, 263, 62 – 70.
dc.identifier.citedreferenceY. C. Jin, Y. B. Shen, T. Hibino, J. Mater. Chem. 2010, 20, 6214 – 6217.
dc.identifier.citedreferenceX. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen, J. Membr. Sci. 2009, 341, 149 – 154.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.