Show simple item record

Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square‐Planar Copper(I) Complex

dc.contributor.authorDahl, Eric W.
dc.contributor.authorSzymczak, Nathaniel K.
dc.date.accessioned2017-06-16T20:13:36Z
dc.date.available2017-06-16T20:13:36Z
dc.date.issued2016-02-24
dc.identifier.citationDahl, Eric W.; Szymczak, Nathaniel K. (2016). "Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square‐Planar Copper(I) Complex." Angewandte Chemie 128(9): 3153-3157.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/137460
dc.description.abstract6,6′′‐Bis(2,4,6‐trimethylanilido)terpyridine (H2TpyNMes) was prepared as a rigid, tridentate pincer ligand containing pendent anilines as hydrogen bond donor groups in the secondary coordination sphere. The coordination geometry of (H2TpyNMes)copper(I)‐halide (Cl, Br and I) complexes is dictated by the strength of the NH–halide hydrogen bond. The CuICl and CuIICl complexes are nearly isostructural, the former presenting a highly unusual square‐planar geometry about CuI. The geometric constraints provided by secondary interactions are reminiscent of blue copper proteins where a constrained geometry, or entatic state, allows for extremely rapid CuI/CuII electron‐transfer self‐exchange rates. Cu(H2TpyNMes)Cl shows similar fast electron transfer (≈105 m−1 s−1) which is the same order of magnitude as biological systems.Entatischer Zustand: Wasserstoffbrücken diktieren die Geometrie von CuI‐ und CuII‐Komplexen. Eine ungewöhnliche quadratisch‐planare Geometrie am CuI‐Zentrum (siehe Struktur) wird als nahezu isostrukturell zum CuII‐Kern beobachtet. Die sehr geringe Reorganisationsenergie zwischen den Redoxzuständen ermöglicht einen extrem schnellen CuI/CuII‐Selbstaustausch.
dc.publisherRoyal Society of Chemistry
dc.publisherWiley Periodicals, Inc.
dc.subject.otherKupfer
dc.subject.otherWasserstoffbrücken
dc.subject.otherZweite Koordinationssphäre
dc.subject.otherQuadratisch-planare Komplexe
dc.subject.otherEntatischer Zustand
dc.titleHydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square‐Planar Copper(I) Complex
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137460/1/ange201511527_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137460/2/ange201511527.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137460/3/ange201511527-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.201511527
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceA. R. Petersen, R. A. Taylor, I. Vicente-Hernández, P. R. Mallender, H. Olley, A. J. P. White, G. J. P. Britovsek, J. Am. Chem. Soc. 2014, 136, 14089 – 14099;
dc.identifier.citedreferenceC. M. Moore, D. A. Quist, J. W. Kampf, N. K. Szymczak, Inorg. Chem. 2014, 53, 3278 – 3280;
dc.identifier.citedreferenceJ. C. M. Rivas, S. L. Hinchley, L. Metteau, S. Parsons, Dalton Trans. 2006, 2316 – 2322.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ.-D. Cheon, T. Mutai, K. Araki, Tetrahedron Lett. 2006, 47, 5079 – 5082;
dc.identifier.citedreferenceR. A. Taylor, D. J. Law, G. J. Sunley, A. J. P. White, G. J. P. Britovsek, Angew. Chem. Int. Ed. 2009, 48, 5900 – 5903; Angew. Chem. 2009, 121, 6014 – 6017.
dc.identifier.citedreferenceA. R. Petersen, R. A. Taylor, I. Vicente-Hernández, J. Heinzer, A. J. P. White, G. J. P. Britovsek, Organometallics 2014, 33, 1453 – 1461.
dc.identifier.citedreferenceL. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955 – 964.
dc.identifier.citedreferenceR. R. Gagne, J. L. Allison, G. C. Lisensky, Inorg. Chem. 1978, 17, 3563 – 3571.
dc.identifier.citedreferenceSP geometries about Cu I have also been observed in two multinuclear systems: P. L. Arnold, A. C. Scarisbrick, A. J. Blake, C. Wilson, Chem. Commun. 2001, 2340 – 2341; and M. Shinoura, S. Kita, M. Ohba, H. Ōkawa, H. Furutachi, M. Suzuki, Inorg. Chem. 2000, 39, 4520 – 4526; Note that Jacobi has reported a complex that may be viewed as either 4-coordinate SP Cu I or as 5-coordinate, with a κ 2 -carboxylate ligand (O−Cu=2.56 Å).: É. Balogh-Hergovich, J. Kaizer, G. Speier, G. Huttner, A. Jacobi, Inorg. Chem. 2000, 39, 4224 – 4229.
dc.identifier.citedreferenceL. Brammer, E. A. Bruton, P. Sherwood, Cryst. Growth Des. 2001, 1, 277 – 290.
dc.identifier.citedreferenceP. Hobza, K. Müller-Dethlefs, Non-covalent Interactions, Royal Society of Chemistry, Cambridge, 2010.
dc.identifier.citedreferenceJ. W. Steed, J. L. Atwood, Supramolecular Chemistry, 2 nd ed., Wiley, West Sussex, 2009.
dc.identifier.citedreferenceP. J. Chirik, K. Wieghardt, Science 2010, 327, 794 – 795.
dc.identifier.citedreferenceC. C. Scarborough, K. M. Lancaster, S. DeBeer, T. Weyhermüller, S. Sproules, K. Wieghardt, Inorg. Chem. 2012, 51, 3718 – 3732.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben in Handbook of X-Ray Photoelectron Spectroscopy (Ed.: J. Chastain ), PerkinElmer Corp., Phys. Electron. Div, Eden Prairie, MN, 1992, pp.  86 – 87;
dc.identifier.citedreferenceD. C. Frost, A. Ishitani, C. A. McDowell, Mol. Phys. 1972, 24, 861 – 877;
dc.identifier.citedreferenceA. K. Hui, Y. Losovyj, R. L. Lord, K. G. Caulton, Inorg. Chem. 2014, 53, 3039 – 3047.
dc.identifier.citedreferenceGeometry optimizations performed on the crystal structure of 1 and subsequent stability calculations using spin-unrestricted functionals show the Cu I closed-shell singlet state to be an energy minimum. (See SI).
dc.identifier.citedreferenceA. V. Iogansen, G. A. Kurkchi, V. M. Furman, V. P. Glazunov, S. E. Odinokov, Zh. Prikl. Spektrosk. 1980, 33, 460.
dc.identifier.citedreferenceNote that under the identical conditions, ferrocene behaves similar to 1.
dc.identifier.citedreferenceDue to the nearly diffusion-controlled ligand substitution rates typical of Cu II complexes, coordination number invariance is not required to access fast ET rates. For examples, see reference [8]. The analogous ET self exchange experiment was not possible with 5, due to its facile disproportionation at room temperature and irreversible Cu II /Cu I reduction.
dc.identifier.citedreferenceE. J. Pulliam, D. R. McMillin, Inorg. Chem. 1984, 23, 1172 – 1175.
dc.identifier.citedreferenceZ. Thammavongsy, M. E. LeDoux, A. G. Breuhaus-Alvarez, T. Seda, L. N. Zakharov, J. D. Gilbertson, Eur. J. Inorg. Chem. 2013, 4008 – 4015;
dc.identifier.citedreferenceE. M. Matson, Y. J. Park, A. R. Fout, J. Am. Chem. Soc. 2014, 136, 17398 – 17401;
dc.identifier.citedreference 
dc.identifier.citedreferenceH. B. Gray, B. G. Malmström, R. J. Williams, J. Biol. Inorg. Chem. 2000, 5, 551 – 559;
dc.identifier.citedreferenceM. C. Machczynski, H. B. Gray, J. H. Richards, J. Inorg. Biochem. 2002, 88, 375 – 380;
dc.identifier.citedreferenceJ. J. Warren, K. M. Lancaster, J. H. Richards, H. B. Gray, J. Inorg. Biochem. 2012, 115, 119 – 126.
dc.identifier.citedreferenceC. Dennison, Coord. Chem. Rev. 2005, 249, 3025 – 3054.
dc.identifier.citedreferenceD. B. Rorabacher, Chem. Rev. 2004, 104, 651 – 698.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. G. Malmström, Eur. J. Biochem. 1994, 223, 711 – 718;
dc.identifier.citedreferenceE. I. Solomon, M. J. Baldwin, M. D. Lowery, Chem. Rev. 1992, 92, 521 – 542;
dc.identifier.citedreferenceJ. A. Guckert, M. D. Lowery, E. I. Solomon, J. Am. Chem. Soc. 1995, 117, 2817 – 2844;
dc.identifier.citedreferenceU. Ryde, M. H. Olsson, K. Pierloot, B. O. Roos, J. Mol. Biol. 1996, 261, 586 – 596;
dc.identifier.citedreferenceP. Comba, Coord. Chem. Rev. 2000, 200, 217 – 245.
dc.identifier.citedreferenceB. L. Vallee, R. J. Williams, Proc. Natl. Acad. Sci. USA 1968, 59, 498 – 505.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. M. Marshall, D. K. Garner, T. D. Wilson, Y.-G. Gao, H. Robinson, M. J. Nilges, Y. Lu, Nature 2009, 462, 113 – 116;
dc.identifier.citedreferenceS. Y. New, N. M. Marshall, T. S. A. Hor, F. Xue, Y. Lu, Chem. Commun. 2012, 48, 4217 – 4219;
dc.identifier.citedreferenceG. Van Pouderoyen, S. Mazumdar, N. I. Hunt, A. O. Hill, G. W. Canters, Eur. J. Biochem. 1994, 222, 583 – 588;
dc.identifier.citedreferenceC. Libeu, M. Kukimoto, M. Nishiyama, S. Horinouchi, E. T. Adman, Biochemistry 1997, 36, 13160 – 13179;
dc.identifier.citedreferenceC. J. Carrell, D. Sun, S. Jiang, V. L. Davidson, F. S. Mathews, Biochemistry 2004, 43, 9372 – 9380.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Hoffmann, S. Binder, A. Jesser, R. Haase, U. Flörke, M. Gnida, M. Salomone-Stagni, W. Meyer-Klaucke, B. Lebsanft, L. E. Grünig, S. Schneider, M. Hashemi, A. Goos, A. Wetzel, M. Rübhausen, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2014, 53, 299 – 304; Angew. Chem. 2014, 126, 305 – 310;
dc.identifier.citedreferenceG. Chaka, J. L. Sonnenberg, H. B. Schlegel, M. J. Heeg, G. Jaeger, T. J. Nelson, L. A. Ochrymowycz, D. B. Rorabacher, J. Am. Chem. Soc. 2007, 129, 5217 – 5227;
dc.identifier.citedreferenceQ. Yu, C. A. Salhi, E. A. Ambundo, M. J. Heeg, L. A. Ochrymowycz, D. B. Rorabacher, J. Am. Chem. Soc. 2001, 123, 5720 – 5729.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Doine, Y. Yano, T. W. Swaddle, Inorg. Chem. 1989, 28, 2319 – 2322;
dc.identifier.citedreferenceK. Krylova, C. P. Kulatilleke, M. J. Heeg, C. A. Salhi, L. A. Ochrymowycz, D. B. Rorabacher, Inorg. Chem. 1999, 38, 4322 – 4328;
dc.identifier.citedreferenceC. P. Kulatilleke, Polyhedron 2007, 26, 1166 – 1172;
dc.identifier.citedreferenceM. A. Augustin, J. K. Yandell, Inorg. Chem. 1979, 18, 577 – 583.
dc.identifier.citedreferenceL. Garcia, F. Cisnetti, N. Gillet, R. Guillot, M. Aumont-Nicaise, J.-P. Piquemal, M. Desmadril, F. Lambert, C. Policar, J. Am. Chem. Soc. 2015, 137, 1141 – 1146.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Zhao, H.-B. Wang, L.-N. Ji, Z.-W. Mao, Chem. Soc. Rev. 2013, 42, 8360 – 8375;
dc.identifier.citedreferenceA. S. Borovik, Acc. Chem. Res. 2005, 38, 54 – 61;
dc.identifier.citedreferenceD. Natale, J. C. Mareque-Rivas, Chem. Commun. 2008, 425 – 437;
dc.identifier.citedreferenceK. J. Tubbs, A. L. Fuller, B. Bennett, A. M. Arif, L. M. Berreau, Inorg. Chem. 2003, 42, 4790 – 4791;
dc.identifier.citedreferenceL. R. Widger, C. G. Davies, T. Yang, M. A. Siegler, O. Troeppner, G. N. L. Jameson, I. Ivanović-Burmazović, D. P. Goldberg, J. Am. Chem. Soc. 2014, 136, 2699 – 2702;
dc.identifier.citedreferenceL. E. Cheruzel, M. R. Cecil, S. E. Edison, M. S. Mashuta, M. J. Baldwin, R. M. Buchanan, Inorg. Chem. 2006, 45, 3191 – 3202;
dc.identifier.citedreferenceG. Feng, J. C. Mareque-Rivas, N. H. Williams, Chem. Commun. 2006, 1845 – 1847;
dc.identifier.citedreferenceR. L. Shook, A. S. Borovik, Chem. Commun. 2008, 6095 – 6107;
dc.identifier.citedreferenceA. Wada, Y. Honda, S. Yamaguchi, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2004, 43, 5725 – 5735;
dc.identifier.citedreferenceL. M. Berreau, Eur. J. Inorg. Chem. 2006, 273 – 283;
dc.identifier.citedreferenceM. Rakowski DuBois, D. L. DuBois, Chem. Soc. Rev. 2009, 38, 62 – 72;
dc.identifier.citedreferenceJ. S. Hart, G. S. Nichol, J. B. Love, Dalton Trans. 2012, 41, 5785 – 5788;
dc.identifier.citedreferenceN. S. Sickerman, Y. J. Park, G. K. Y. Ng, J. E. Bates, M. Hilkert, J. W. Ziller, F. Furche, A. S. Borovik, Dalton Trans. 2012, 41, 4358 – 4364;
dc.identifier.citedreferenceJ. Rosenthal, D. G. Nocera, Acc. Chem. Res. 2007, 40, 543 – 553.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. M. Moore, N. K. Szymczak, Chem. Commun. 2013, 49, 400 – 402;
dc.identifier.citedreferenceC. M. Moore, N. K. Szymczak, Chem. Commun. 2015, 51, 5490 – 5492;
dc.identifier.citedreferenceC. M. Moore, N. K. Szymczak, Chem. Sci. 2015, 6, 3373 – 3377;
dc.identifier.citedreferenceJ. B. Geri, N. K. Szymczak, J. Am. Chem. Soc. 2015, 137, 12808 – 12814.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. Nieto, M. S. Livings, J. B. Sacci   III, L. E. Reuther, M. Zeller, E. T. Papish, Organometallics 2011, 30, 6339 – 6342;
dc.identifier.citedreferenceK.-i. Fujita, Y. Tanaka, M. Kobayashi, R. Yamaguchi, J. Am. Chem. Soc. 2014, 136, 4829 – 4832;
dc.identifier.citedreferenceJ. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383 – 388.
dc.identifier.citedreferenceC. M. Moore, E. W. Dahl, N. K. Szymczak, Curr. Opin. Chem. Biol. 2015, 25, 9 – 17.
dc.identifier.citedreferenceG. Aullón, D. Bellamy, A. G. Orpen, L. Brammer, E. A. Bruton, Chem. Commun. 1998, 653 – 654.
dc.identifier.citedreference 
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.