Show simple item record

Generation of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal‐Free Six‐Step Domino Reaction

dc.contributor.authorBock, Christina M.
dc.contributor.authorParameshwarappa, Gangajji
dc.contributor.authorBönisch, Simon
dc.contributor.authorNeiss, Christian
dc.contributor.authorBauer, Walter
dc.contributor.authorHampel, Frank
dc.contributor.authorGörling, Andreas
dc.contributor.authorTsogoeva, Svetlana B.
dc.date.accessioned2017-06-16T20:15:52Z
dc.date.available2017-06-16T20:15:52Z
dc.date.issued2016-04-04
dc.identifier.citationBock, Christina M.; Parameshwarappa, Gangajji; Bönisch, Simon ; Neiss, Christian; Bauer, Walter; Hampel, Frank; Görling, Andreas ; Tsogoeva, Svetlana B. (2016). "Generation of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal‐Free Six‐Step Domino Reaction." Chemistry – A European Journal 22(15): 5189-5197.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137557
dc.description.abstractAza‐ and carbobicyclic compounds possess favorable pharmaceutical properties, but they are difficult to access. Herein, we demonstrate an unprecedented organocatalytic two component six‐step chemodivergent domino reaction, which provides a straightforward, sustainable and atom economical route to difficult‐to‐access complex bicyclic architectures: azabicycles and carbobicycles, whose ratios can be controlled by the applied electrophiles and catalysts. Detailed NMR and X‐ray studies on the structures and relative stereochemistry of selected compounds are presented. Mechanistic investigations of the chemoselective branching step have been carried out with DFT methods in conjunction with semiempirical van der Waals interactions. This new domino reaction opens up a new vista of generating, in a single operation, new bioactive compounds with strong antiviral properties (EC50 up to 0.071 μm for human cytomegalovirus (HCMV)) outperforming clinically used ganciclovir (EC50 2.6 μm).Six steps in one go! An unprecedented two component six‐step domino reaction, providing a straightforward and atom economical route to bioactive azabicycles and carbobicycles is presented. DFT calculations accounting for dispersion interactions revealed that chemoselectivity might result from small differences in transition state and reaction energies of the branching step. This reaction opens up a new vista of generating, in a single operation, new antivirals outperforming clinically used drugs.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermedicinal chemistry
dc.subject.otherantiviral agents
dc.subject.otherdensity functional calculations
dc.subject.otherdomino reaction
dc.subject.otherorganocatalysis
dc.titleGeneration of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal‐Free Six‐Step Domino Reaction
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/1/chem201504798.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/2/chem201504798_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/3/chem201504798-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201504798
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceR. Marcia de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007, 2575 – 2600;
dc.identifier.citedreferenceŁ. Albrecht, H. Jiang, K. A. Jørgensen, Angew. Chem. Int. Ed. 2011, 50, 8492 – 8509; Angew. Chem. 2011, 123, 8642 – 8660;
dc.identifier.citedreferenceL. F. Tietze, Domino Reactions: Concepts for Efficient Organic Synthesis, Wiley-VCH, Weinheim, 2014.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Grondal, M. Jeanty, D. Enders, Nat. Chem. 2010, 2, 167 – 178;
dc.identifier.citedreferenceE. Marqués-López, R. P. Herrera, M. Christmann, Nat. Prod. Rep. 2010, 27, 1138 – 1167;
dc.identifier.citedreferenceM. Rueping, J. Dufour, F. R. Schoepke, Green Chem. 2011, 13, 1084 – 1105;
dc.identifier.citedreferenceD. Enders, M. R. M. Hüttl, C. Grondal, G. Raabe, Nature 2006, 441, 861 – 863;
dc.identifier.citedreferenceA. Carlone, S. Cabrera, M. Marigo, K. A. Jørgensen, Angew. Chem. Int. Ed. 2007, 46, 1101 – 1104; Angew. Chem. 2007, 119, 1119 – 1122;
dc.identifier.citedreferenceD. Enders, M. R. M. Hüttl, G. Raabe, J. W. Bats, Adv. Synth. Catal. 2008, 350, 267 – 279;
dc.identifier.citedreferenceH. Ishikawa, T. Suzuki, Y. Hayashi, Angew. Chem. Int. Ed. 2009, 48, 1304 – 1307; Angew. Chem. 2009, 121, 1330 – 1333;
dc.identifier.citedreferenceL.-Y. Wu, G. Bencivenni, M. Mancinelli, A. Mazzanti, G. Bartoli, P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 7196 – 7199; Angew. Chem. 2009, 121, 7332 – 7335;
dc.identifier.citedreferenceH. Ishikawa, T. Suzuki, H. Orita, T. Uchimaru, Y. Hayashi, Chem. Eur. J. 2010, 16, 12616 – 12626;
dc.identifier.citedreferenceK. Jiang, Z.-J. Jia, S. Chen, L. Wu, Y.-C. Chen, Chem. Eur. J. 2010, 16, 2852 – 2856;
dc.identifier.citedreferenceB.-C. Hong, P. Kotame, C.-W. Tsai, J.-H. Liao, Org. Lett. 2010, 12, 776 – 779;
dc.identifier.citedreferenceD. Enders, R. Krüll, W. Bettray, Synthesis 2010, 2010, 567 – 572;
dc.identifier.citedreferenceD. Enders, C. Wang, M. Mukanova, A. Greb, Chem. Commun. 2010, 46, 2447 – 2449;
dc.identifier.citedreferenceT. Urushima, D. Sakamoto, H. Ishikawa, Y. Hayashi, Org. Lett. 2010, 12, 4588 – 4591;
dc.identifier.citedreferenceK. Jiang, Z.-J. Jia, X. Yin, L. Wu, Y.-C. Chen, Org. Lett. 2010, 12, 2766 – 2769;
dc.identifier.citedreferenceH. Ishikawa, M. Honma, Y. Hayashi, Angew. Chem. Int. Ed. 2011, 50, 2824 – 2827; Angew. Chem. 2011, 123, 2876 – 2879;
dc.identifier.citedreferenceG. Dickmeiss, K. L. Jensen, D. Worgull, P. T. Franke, K. A. Jørgensen, Angew. Chem. Int. Ed. 2011, 50, 1580 – 1583; Angew. Chem. 2011, 123, 1618 – 1621;
dc.identifier.citedreferenceM. Rueping, K. Haack, W. Ieawsuwan, H. Sunden, M. Blanco, F. R. Schoepke, Chem. Commun. 2011, 47, 3828 – 3830.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Seebach, U. Grošelj, W. B. Schweizer, S. Grimme, C. Mück-Lichtenfeld, Helv. Chim. Acta 2010, 93, 1 – 16;
dc.identifier.citedreferenceC. Reiter, S. López-Molina, B. Schmid, C. Neiss, A. Görling, S. B. Tsogoeva, ChemCatChem 2014, 6, 1324 – 1332;
dc.identifier.citedreferenceA. Armstrong, R. A. Boto, P. Dingwall, J. Contreras-Garcia, M. J. Harvey, N. J. Mason, H. S. Rzepa, Chem. Sci. 2014, 5, 2057 – 2071.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. E. Kuehne, L. He, P. A. Jokiel, C. J. Pace, M. W. Fleck, I. M. Maisonneuve, S. D. Glick, J. M. Bidlack, J. Med. Chem. 2003, 46, 2716 – 2730;
dc.identifier.citedreferenceZ. Ye, L. Guo, K. J. Barakat, P. G. Pollard, B. L. Palucki, I. K. Sebhat, R. K. Bakshi, R. Tang, R. N. Kalyani, A. Vongs, A. S. Chen, H. Y. Chen, C. I. Rosenblum, T. MacNeil, D. H. Weinberg, Q. Peng, C. Tamvakopoulos, R. R. Miller, R. A. Stearns, D. E. Cashen, W. J. Martin, J. M. Metzger, A. M. Strack, D. E. MacIntyre, L. H. T. Van der Ploeg, A. A. Patchett, M. J. Wyvratt, R. P. Nargund, Bioorg. Med. Chem. Lett. 2005, 15, 3501 – 3505;
dc.identifier.citedreferenceM. O. Faruk Khan, M. S. Levi, B. L. Tekwani, N. H. Wilson, R. F. Borne, Bioorg. Med. Chem. 2007, 15, 3919 – 3925.
dc.identifier.citedreferenceS. L. T. Cappendijk, M. R. Dzoljic, Eur. J. Pharmacol. 1993, 241, 261 – 265.
dc.identifier.citedreferenceC. B. Page, A. R. Pinder, J. Chem. Soc. 1964, 4811 – 4816.
dc.identifier.citedreferenceJ. C. Delorenzi, M. Attias, C. R. Gattass, M. Andrade, C. Rezende, Â. da Cunha Pinto, A. T. Henriques, D. C. Bou-Habib, E. M. B. Saraiva, Antimicrob. Agents Chemother. 2001, 45, 1349 – 1354.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. K. C. Liu, S. M. Sakya, C. J. O’Donnell, A. C. Flick, J. Li, Bioorg. Med. Chem. 2011, 19, 1136 – 1154;
dc.identifier.citedreferenceG. L. Patrick, An Introduction to Drug Synthesis, Oxford University Press, 2015.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Seebacher, C. Schlapper, R. Brun, M. Kaiser, R. Saf, R. Weis, Eur. J. Pharm. Sci. 2005, 24, 281 – 289;
dc.identifier.citedreferenceW. Seebacher, C. Schlapper, R. Brun, M. Kaiser, R. Saf, R. Weis, Eur. J. Med. Chem. 2006, 41, 970 – 977.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Igarashi, Y. Nakano, K. Takezawa, T. Watanabe, S. Sato, Synthesis 1987, 1987, 68 – 70;
dc.identifier.citedreferenceY. Nakano, W.-Y. Shi, Y. Nishii, M. Igarashi, J. Heterocycl. Chem. 1999, 36, 33 – 40;
dc.identifier.citedreferenceY. Nakano, Y. Kaneko, W. A. Fen, Heterocycles 1999, 51, 169 – 177;
dc.identifier.citedreferenceN. Mahajan, V. Gupta, P. Kotwal, A. S. Pannu, T. K. Razdan, J. Chem. Crystallogr. 2011, 41, 552 – 556;
dc.identifier.citedreferenceY. Kohari, Y. Okuyama, E. Kwon, T. Furuyama, N. Kobayashi, T. Otuki, J. Kumagai, C. Seki, K. Uwai, G. Dai, T. Iwasa, H. Nakano, J. Org. Chem. 2014, 79, 9500 – 9511.
dc.identifier.citedreferenceM. Rueping, C. Azap, Angew. Chem. Int. Ed. 2006, 45, 7832 – 7835; Angew. Chem. 2006, 118, 7996 – 7999.
dc.identifier.citedreferenceH. Yang, R. G. Carter, J. Org. Chem. 2009, 74, 5151 – 5156.
dc.identifier.citedreferenceH. Nakano, K. Osone, M. Takeshita, E. Kwon, C. Seki, H. Matsuyama, N. Takano, Y. Kohari, Chem. Commun. 2010, 46, 4827 – 4829.
dc.identifier.citedreferenceV. Thornqvist, S. Manner, M. Wingstrand, T. Frejd, J. Org. Chem. 2005, 70, 8609 – 8612.
dc.identifier.citedreferenceD. Schinzer, M. Kalesse, Tetrahedron Lett. 1991, 32, 4691 – 4694.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. A. Yalalov, S. B. Tsogoeva, T. E. Shubina, I. M. Martynova, T. Clark, Angew. Chem. Int. Ed. 2008, 47, 6624 – 6628; Angew. Chem. 2008, 120, 6726 – 6730;
dc.identifier.citedreferenceS. B. Tsogoeva, S. Wei, M. Freund, M. Mauksch, Angew. Chem. Int. Ed. 2009, 48, 590 – 594; Angew. Chem. 2009, 121, 598 – 602.
dc.identifier.citedreferenceY. Tu, Nat. Med. 2011, 17, 1217 – 1220.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. F. Tietze, H. P. Bell, S. Chandrasekhar, Angew. Chem. Int. Ed. 2003, 42, 3996 – 4028; Angew. Chem. 2003, 115, 4128 – 4160;
dc.identifier.citedreferenceB. Meunier, Acc. Chem. Res. 2008, 41, 69 – 77;
dc.identifier.citedreferenceS. B. Tsogoeva, Mini-Rev. Med. Chem. 2010, 10, 773 – 793.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Horwedel, S. B. Tsogoeva, S. Wei, T. Efferth, J. Med. Chem. 2010, 53, 4842 – 4848;
dc.identifier.citedreferenceC. Reiter, A. Herrmann, A. Çapci, T. Efferth, S. B. Tsogoeva, Bioorg. Med. Chem. 2012, 20, 5637 – 5641;
dc.identifier.citedreferenceC. Reiter, A. Çapcı Karagöz, T. Fröhlich, V. Klein, M. Zeino, K. Viertel, J. Held, B. Mordmüller, S. Emirdağ Öztürk, H. Anıl, T. Efferth, S. B. Tsogoeva, Eur. J. Med. Chem. 2014, 75, 403 – 412; Öztürk, H. Anıl, T. Efferth, S. B. Tsogoeva, Eur. J. Med. Chem. 2014, 75, 403 – 412;
dc.identifier.citedreferenceC. Reiter, T. Fröhlich, M. Zeino, M. Marschall, H. Bahsi, M. Leidenberger, O. Friedrich, B. Kappes, F. Hampel, T. Efferth, S. B. Tsogoeva, Eur. J. Med. Chem. 2015, 97, 164 – 172;
dc.identifier.citedreferenceC. Reiter, T. Fröhlich, L. Gruber, C. Hutterer, M. Marschall, C. Voigtländer, O. Friedrich, B. Kappes, T. Efferth, S. B. Tsogoeva, Bioorg. Med. Chem. 2015, 23, 5452 – 5458.
dc.identifier.citedreferenceCCDC  991547 ( 3 a′ ), 1435950 ( 3 b′ ) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
dc.identifier.citedreferenceCSEARCH/NMRPredict software package, W. Robien, University of Vienna, Austria; http://nmrpredict.orc.univie.ac.at/last viewed October 24, 2015.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. F. Tietze, Chem. Rev. 1996, 96, 115 – 136;
dc.identifier.citedreferenceH.-C. Guo, J.-A. Ma, Angew. Chem. Int. Ed. 2006, 45, 354 – 366; Angew. Chem. 2006, 118, 362 – 375;
dc.identifier.citedreferenceL. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006;
dc.identifier.citedreferenceH. Pellissier, Tetrahedron 2006, 62, 1619 – 1665;
dc.identifier.citedreferenceH. Pellissier, Tetrahedron 2006, 62, 2143 – 2173;
dc.identifier.citedreferenceK. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134 – 7186; Angew. Chem. 2006, 118, 7292 – 7344;
dc.identifier.citedreferenceC. J. Chapman, C. G. Frost, Synthesis 2007, 1 – 21;
dc.identifier.citedreferenceD. Enders, C. Grondal, M. R. M. Hüttl, Angew. Chem. Int. Ed. 2007, 46, 1570 – 1581; Angew. Chem. 2007, 119, 1590 – 1601;
dc.identifier.citedreferenceC. Vaxelaire, P. Winter, M. Christmann, Angew. Chem. Int. Ed. 2011, 50, 3605 – 3607; Angew. Chem. 2011, 123, 3685 – 3687;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.