Show simple item record

Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat

dc.contributor.authorKramer, Andrew M.
dc.contributor.authorAnnis, Gust
dc.contributor.authorWittmann, Marion E.
dc.contributor.authorChadderton, William L.
dc.contributor.authorRutherford, Edward S.
dc.contributor.authorLodge, David M.
dc.contributor.authorMason, Lacey
dc.contributor.authorBeletsky, Dmitry
dc.contributor.authorRiseng, Catherine
dc.contributor.authorDrake, John M.
dc.date.accessioned2017-08-01T19:08:31Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-07
dc.identifier.citationKramer, Andrew M.; Annis, Gust; Wittmann, Marion E.; Chadderton, William L.; Rutherford, Edward S.; Lodge, David M.; Mason, Lacey; Beletsky, Dmitry; Riseng, Catherine; Drake, John M. (2017). "Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat." Ecosphere (7): n/a-n/a.
dc.identifier.issn2150-8925
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/2027.42/137744
dc.description.abstractEfficient management and prevention of species invasions requires accurate prediction of where species of concern can arrive and persist. Species distribution models provide one way to identify potentially suitable habitat by developing the relationship between climate variables and species occurrence data. However, these models when applied to freshwater invasions are complicated by two factors. The first is that the range expansions that typically occur as part of the invasion process violate standard species distribution model assumptions of data stationarity. Second, predicting potential range of freshwater aquatic species is complicated by the reliance on terrestrial climate measurements to develop occurrence relationships for species that occur in aquatic environments. To overcome these obstacles, we combined a recently developed algorithm for species distribution modeling—range bagging—with newly available aquatic habitat‐specific information from the North American Great Lakes region to predict suitable habitat for three potential invasive species: golden mussel, killer shrimp, and northern snakehead. Range bagging may more accurately predict relative suitability than other methods because it focuses on the limits of the species environmental tolerances rather than central tendency or “typical” cases. Overlaying the species distribution model output with aquatic habitat‐specific data then allowed for more specific predictions of areas with high suitability. Our results indicate there is suitable habitat for northern snakehead in the Great Lakes, particularly shallow coastal habitats in the lower four Great Lakes where literature suggests they will favor areas of wetland and submerged aquatic vegetation. These coastal areas also offer the highest suitability for golden mussel, but our models suggest they are marginal habitats. Globally, the Great Lakes provide the closest match to the currently invaded range of killer shrimp, but they appear to pose an intermediate risk to the region. Range bagging provided reliable predictions when assessed either by a standard test set or by tests for spatial transferability, with golden mussel being the most difficult to accurately predict. Our approach illustrates the strength of combining multiple sources of data, while reiterating the need for increased measurement of freshwater habitat at high spatial resolutions to improve the ability to predict potential invasive species.
dc.publisherChicago
dc.publisherWiley Periodicals, Inc.
dc.subject.othernorthern snakehead
dc.subject.otherenvironmental niche
dc.subject.otherhabitat suitability
dc.subject.otherkiller shrimp
dc.subject.othernonindigenous species
dc.subject.othergolden mussel
dc.titleSuitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137744/1/ecs21883-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137744/2/ecs21883.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137744/3/ecs21883_am.pdf
dc.identifier.sourceEcosphere
dc.identifier.citedreferencePagnucco, K. S., G. A. Maynard, S. A. Fera, N. D. Yan, T. F. Nalepa, and A. Ricciardi. 2015. The future of species invasions in the Great Lakes‐St. Lawrence River basin. Journal of Great Lakes Research 41: 96 – 107.
dc.identifier.citedreferenceMichigan Tech Research Institute. 2012. Satellite‐derived lake submerged aquatic vegetation (SAV). http://www.mtri.org/cladophora.html.
dc.identifier.citedreferenceMohseni, O., and H. G. Stefan. 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology 218: 128 – 141.
dc.identifier.citedreferenceOkada, Y. 1960. Studies of the freshwater fishes of Japan, II, Special part. Journal of the Faculty of Fisheries Prefectural University of Mie 4: 31 – 860.
dc.identifier.citedreferencePagel, J., and F. M. Schurr. 2012. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography 21: 293 – 304.
dc.identifier.citedreferencePetitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler, and A. Guisan. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344 – 1348.
dc.identifier.citedreferencePhillips, S. J., and J. Elith. 2013. On estimating probability of presence from use–availability or presence–background data. Ecology 94: 1409 – 1419.
dc.identifier.citedreferencePöckl, M. 2009. Success of the invasive Ponto‐Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biological Invasions 11: 2021 – 2041.
dc.identifier.citedreferenceRicciardi, A. 1998. Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13: 97 – 106.
dc.identifier.citedreferenceRicciardi, A., and H. J. MacIsaac. 2000. Recent mass invasion of the North American Great Lakes by Ponto‐Caspian species. Trends in Ecology & Evolution 15: 62 – 65.
dc.identifier.citedreferenceRicciardi, A., and J. B. Rasmussen. 1998. Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Canadian Journal of Fisheries and Aquatic Sciences 55: 1759 – 1765.
dc.identifier.citedreferenceRothlisberger, J. D., and D. M. Lodge. 2013. The Laurentian Great Lakes as a beachhead and a gathering place for biological invasions. Aquatic Invasions 8: 361 – 374.
dc.identifier.citedreferenceSchwab, D. J., and K. W. Bedford. 1994. Initial implementation of the great lakes forecasting system: a real‐time system for predicting lake circulation and thermal structure. Water Quality Research Journal of Canada 292–3: 203 – 220.
dc.identifier.citedreferenceShuchman, R. A., M. J. Sayers, and C. N. Brooks. 2013. Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi‐scale satellite remote sensing. Journal of Great Lakes Research 39 ( Supplement 1 ): 78 – 89.
dc.identifier.citedreferenceSnelder, T. H., et al. 2006. Development of an ecologic marine classification in the New Zealand region. Environmental Management 39: 12 – 29.
dc.identifier.citedreferenceTrumpickas, J., B. J. Shuter, and C. K. Minns. 2009. Forecasting impacts of climate change on Great Lakes surface water temperatures. Journal of Great Lakes Research 35: 454 – 463.
dc.identifier.citedreferenceTyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F.   Mineur, and O. De Clerck. 2012. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21: 272 – 281.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2008. Predicting future introductions of nonindigenous species to the Great Lakes, EPA/600/R‐08/066F. National Center for Environmental Assessment, Washington, D.C., USA.
dc.identifier.citedreferenceUSACE. 2011. Great Lakes and Mississippi Interbasin Study: non‐native species of concern and dispersal risk for the Great Lakes and Mississippi River Interbasin Study. U.S. Army Corps of Engineers, Chicago, Illinois, USA.
dc.identifier.citedreferenceVáclavík, T., J. A. Kupfer, and R. K. Meentemeyer. 2012. Accounting for multi‐scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography 39: 42 – 55.
dc.identifier.citedreferenceVáclavík, T., and R. K. Meentemeyer. 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions 18: 73 – 83.
dc.identifier.citedreferenceVanderploeg, H. A., J. R. Liebig, T. F. Nalepa, G. L. Fahnenstiel, and S. A. Pothoven. 2010. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research 36 ( Supplement 3 ): 50 – 59.
dc.identifier.citedreferenceVanDerWal, J., H. T. Murphy, A. S. Kutt, G. C. Perkins, B. L. Bateman, J. J. Perry, and A. E. Reside. 2013. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change 3: 239 – 243.
dc.identifier.citedreferencevan der Velde, G., R. S. E. W. Leuven, D. Platvoet, K.   Bacela, M. A. J. Huijbregts, H. W. M. Hendriks, and D. Kruijt. 2009. Environmental and morphological factors influencing predatory behaviour by invasive non‐indigenous gammaridean species. Biological Invasions 11: 2043 – 2054.
dc.identifier.citedreferenceVeloz, S. D., J. W. Williams, J. L. Blois, F. He, B. Otto‐Bliesner, and Z. Liu. 2012. No‐analog climates and shifting realized niches during the late quaternary: implications for 21st‐century predictions by species distribution models. Global Change Biology 18: 1698 – 1713.
dc.identifier.citedreferenceWenger, S. J., and J. D. Olden. 2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution 3: 260 – 267.
dc.identifier.citedreferenceWijnhoven, S., M. C. van Riel, and G. van der Velde. 2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151 – 158.
dc.identifier.citedreferenceWittmann, M. E., G. Annis, A. M. Kramer, L. Mason, C.   Riseng, E. S. Rutherford, W. L. Chadderton, D.   Beletsky, J. M. Drake, and D. M. Lodge. 2017. Refining species distribution model outputs using landscape‐scale habitat data: forecasting grass carp and Hydrilla establishment in the Great Lakes region. Journal of Great Lakes Research 43: 298 – 307.
dc.identifier.citedreferenceXu, M., Z. Wang, C. C. Lin, B. Pan, and N. Zhao. 2013. Experimental study of invasion and biofouling of freshwater mussel Limnoperna fortunei. International Journal of Geosciences 04: 1 – 7.
dc.identifier.citedreferenceAmanov, A. A. 1974. Morphology and mode of life in the Amur snakehead ( Ophiocphalu argus warpachowskii ) in Chimkurgan reservoir. Journal of Ichthyology 14: 713 – 717.
dc.identifier.citedreferenceAraújo, M. B., and A. T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527 – 1539.
dc.identifier.citedreferenceAustin, M. P., and K. P. Van Niel. 2011. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38: 1 – 8.
dc.identifier.citedreferenceBarve, N., V. Barve, A. Jiménez‐Valverde, A. Lira‐Noriega, S. P. Maher, A. T. Peterson, J. Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810 – 1819.
dc.identifier.citedreferenceBeletsky, D., N. Hawley, and Y. R. Rao. 2013. Modeling summer circulation and thermal structure of Lake Erie. Journal of Geophysical Research: Oceans 118: 6238 – 6252.
dc.identifier.citedreferenceBisrat, S. A., M. A. White, K. H. Beard, and D. Richard Cutler. 2012. Predicting the distribution potential of an invasive frog using remotely sensed data in Hawaii. Diversity and Distributions 18: 648 – 660.
dc.identifier.citedreferenceBoets, P., K. Lock, M. Messiaen, and P. L. M. Goethals. 2010. Combining data‐driven methods and lab studies to analyse the ecology of Dikerogammarus villosus. Ecological Informatics 5: 133 – 139.
dc.identifier.citedreferenceBoltovskoy, D., N. Correa, D. Cataldo, and F. Sylvester. 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biological Invasions 8: 947 – 963.
dc.identifier.citedreferenceBoyce, F. M., M. A. Donelan, P. F. Hamblin, C. R. Murthy, and T. J. Simons. 1989. Thermal structure and circulation in the great lakes. Atmosphere‐Ocean 27: 607 – 642.
dc.identifier.citedreferenceBrenden, T. O., L. Wang, and P. W. Seelbach. 2008. A river valley segment classification of Michigan streams based on fish and physical attributes. Transactions of the American Fisheries Society 137: 1621 – 1636.
dc.identifier.citedreferenceBruijs, M. C. M., B. Kelleher, G. Van Der Velde, and A. B. De Vaate. 2001. Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: indicators of further dispersal via ballast water transport. Archiv für Hydrobiologie 152: 633 – 646.
dc.identifier.citedreferenceCasellato, S., G. La Piana, L. Latella, and S. Ruffo. 2006. Dikerogammarus villosus (Sowinsky, 1894) (Crustacea, Amphipoda, Gammaridae) for the first time in Italy. Italian Journal of Zoology 73: 97 – 104.
dc.identifier.citedreferenceChu, P. Y., J. G. W. Kelley, G. V. Mott, A. Zhang, and G. A. Lang. 2011. Development, implementation, and skill assessment of the NOAA/NOS Great Lakes Operational Forecast System. Ocean Dynamics 61: 1305 – 1316.
dc.identifier.citedreferenceCord, A., and D. Rödder. 2011. Inclusion of habitat availability in species distribution models through multi‐temporal remote‐sensing data? Ecological Applications 21: 3285 – 3298.
dc.identifier.citedreferenceCouncil of Great Lakes Governors. 2013. Communication from the Council of Great Lakes Governors (2013) Governors and Premiers unite to block “least wanted” aquatic invasive species. Chicago, Illinois, USA.
dc.identifier.citedreferenceCourtenay, W. R., and J. D. Williams. 2004. Snakeheads (Pisces, Channidae): a biological synopsis and risk assessment. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, USA.
dc.identifier.citedreferenceCucherousset, J., and J. D. Olden. 2011. Ecological impacts of nonnative freshwater fishes. Fisheries 36: 215 – 230.
dc.identifier.citedreferenceDevin, S., C. Piscart, J. N. Beisel, and J. C. Moreteau. 2003. Ecological traits of the amphipod invader Dikerogammarus villosus on a mesohabitat scale. Archiv für Hydrobiologie 158: 43 – 56.
dc.identifier.citedreferenceDick, J. T. A., and D. Platvoet. 2000. Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proceedings of the Royal Society of London B: Biological Sciences 267: 977 – 983.
dc.identifier.citedreferenceDick, J. T. A., D. Platvoet, and D. W. Kelly. 2002. Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 59: 1078 – 1084.
dc.identifier.citedreferenceDrake, J. M. 2015. Range bagging: a new method for ecological niche modelling from presence‐only data. Journal of the Royal Society Interface 12: 20150086.
dc.identifier.citedreferenceElith, J., and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677 – 697.
dc.identifier.citedreferenceESRI. 2014. ArcMap 10.2. Environmental Systems Research Institute, Redlands, California, USA.
dc.identifier.citedreferenceFahnenstiel, G., T. Nalepa, S. Pothoven, H. Carrick, and D. Scavia. 2010. Lake Michigan lower food web: long‐term observations and Dreissena impact. Journal of Great Lakes Research 36 ( Supplement 3 ): 1 – 4.
dc.identifier.citedreferenceFrank, S. 1970. Acclimatization experiments with amur snake head, Ophiocephalus argus warpachowskii Berg, 1909 in Czechoslovakia. Acta Societatis Zoologicae Bohemoslovacae 34: 277 – 283.
dc.identifier.citedreferenceFroese, R. and D. Pauly. 2011. FishBase. http://www.fishbase.org
dc.identifier.citedreferenceGallardo, B., and D. C. Aldridge. 2012. Priority setting for invasive species management: risk assessment of Ponto‐Caspian invasive species into Great Britain. Ecological Applications 23: 352 – 364.
dc.identifier.citedreferenceGallien, L., R. Douzet, S. Pratte, N. E. Zimmermann, and W. Thuiller. 2012. Invasive species distribution models: how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography 21: 1126 – 1136.
dc.identifier.citedreferenceGantz, C. A., D. R. Gordon, C. L. Jerde, R. P. Keller, W. L. Chadderton, P. D. Champion, and D. M. Lodge. 2015. Managing the introduction and spread of non‐native aquatic plants in the Laurentian Great Lakes: a regional risk assessment approach. Management of Biological Invasions 6: 45 – 55.
dc.identifier.citedreferenceGormley, A. M., D. M. Forsyth, P. Griffioen, M. Lindeman, D. S. L. Ramsey, M. P. Scroggie, and L. Woodford. 2011. Using presence‐only and presence–absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology 48: 25 – 34.
dc.identifier.citedreferenceGraham, C. H., and R. J. Hijmans. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography 15: 578 – 587.
dc.identifier.citedreferenceGreat Lakes Coastal Wetland Consortium. 2004. Great Lakes Coastal Wetland Inventory. http://glc.org/projects/habitat/coastal-wetlands/cwc-inventory/
dc.identifier.citedreferenceGronewold, A. D., and C. A. Stow. 2013. Unprecedented seasonal water level dynamics on one of the Earth’s largest lakes. Bulletin of the American Meteorological Society 95: 15 – 17.
dc.identifier.citedreferenceGuisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993 – 1009.
dc.identifier.citedreferenceHerborg, L.‐M., N. E. Mandrak, B. C. Cudmore, and H. J. MacIsaac. 2007. Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America. Canadian Journal of Fisheries and Aquatic Sciences 64: 1723 – 1735.
dc.identifier.citedreferenceHijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas.  International Journal of Climatology 25: 1965 – 1978.
dc.identifier.citedreferenceHirzel, A. H., G. Le Lay, V. Helfer, C. Randin, and A.   Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199: 142 – 152.
dc.identifier.citedreferenceHutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium 22: 415 – 427.
dc.identifier.citedreferenceJiménez‐Valverde, A., A. T. Peterson, J. Soberón, J. M. Overton, P. Aragón, and J. M. Lobo. 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785 – 2797.
dc.identifier.citedreferenceJosens, G., A. B. de Vaate, P. Usseglio‐Polatera, R. Cammaerts, F. Chérot, F. Grisez, P. Verboonen, and J.‐P. V. Bossche. 2005. Native and exotic Amphipoda and other Peracarida in the River Meuse: New assemblages emerge from a fast changing fauna. Hydrobiologia 542: 203 – 220.
dc.identifier.citedreferenceKao, Y., C. P. Madenjian, D. B. Bunnell, B. M. Lofgren, and M. Perroud. 2015. Temperature effects induced by climate change on the growth and consumption by Salmonines in Lakes Michigan and Huron. Environmental Biology of Fishes 98: 1089 – 1104.
dc.identifier.citedreferenceKaratayev, A. Y., D. Boltovskoy, D. K. Padilla, and L. E. Burlakova. 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26: 205 – 213.
dc.identifier.citedreferenceKeller, R. P., J. M. Drake, M. B. Drew, and D. M. Lodge. 2011. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions 17: 93 – 102.
dc.identifier.citedreferenceKeller, R. P., D. M. Lodge, M. A. Lewis, and J. F. Shogren. 2009. Bioeconomics of invasive species: integrating ecology, economics, policy, and management. Oxford University Press, Oxford, UK.
dc.identifier.citedreferenceKerfoot, W. C., F. Yousef, S. A. Green, J. W. Budd, D. J. Schwab, and H. A. Vanderploeg. 2010. Approaching storm: disappearing winter bloom in Lake Michigan. Journal of Great Lakes Research 36 ( Supplement 3 ): 30 – 41.
dc.identifier.citedreferenceKilroy, C., T. H. Snelder, O. Floerl, C. C. Vieglais, and K. L. Dey. 2008. A rapid technique for assessing the suitability of areas for invasive species applied to New Zealand’s rivers. Diversity and Distributions 14: 262 – 272.
dc.identifier.citedreferenceKobak, J., Ł. Jermacz, and A. Dzierżyńska‐Białończyk. 2015. Substratum preferences of the invasive killer shrimp Dikerogammarus villosus. Journal of Zoology 297: 66 – 76.
dc.identifier.citedreferenceKolar, C. S., and D. M. Lodge. 2001. Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution 16: 199 – 204.
dc.identifier.citedreferenceKulhanek, S. A., B. Leung, and A. Ricciardi. 2011. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecological Applications 21: 203 – 213.
dc.identifier.citedreferenceLacey Act. 1900. An act to enlarge the powers of the Department of Agriculture, prohibit the transportation by interstate commerce of game killed in violation of local laws, and for other purposes. Chapter 553. Pages 187 – 189. US Government, Washington, D.C., USA.
dc.identifier.citedreferenceLeathwick, J. R., D. Rowe, J. Richardson, J. Elith, and T.   Hastie. 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biology 50: 2034 – 2052.
dc.identifier.citedreferenceLeathwick, J. R., T. Snelder, W. L. Chadderton, J. Elith, K. Julian, and S. Ferrier. 2011. Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. Freshwater Biology 56: 21 – 38.
dc.identifier.citedreferenceLeung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis, and G. Lamberti. 2002. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London Series B: Biological Sciences 269: 2407 – 2413.
dc.identifier.citedreferenceLeung, B., et al. 2012. TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters 15: 1475 – 1493.
dc.identifier.citedreferenceLockwood, J. L., P. Cassey, and T. Blackburn. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20: 223 – 228.
dc.identifier.citedreferenceLods‐Crozet, B., and O. Reymond. 2006. Bathymetric expansion of an invasive gammarid ( Dikerogammarus villosus, Crustacea, Amphipoda) in Lake Léman. Journal of Limnology 65: 141.
dc.identifier.citedreferenceMacNeil, C., et al. 2010. The Ponto‐Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquatic Invasions 5: 441 – 445.
dc.identifier.citedreferenceMcKenna Jr., J. E., and C. Castiglione. 2010. Hierarchical multi‐scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie. Journal of Great Lakes Research 36: 757 – 771.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.