Show simple item record

Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage

dc.contributor.authorHou, Jun
dc.date.accessioned2018-01-31T18:17:57Z
dc.date.availableNO_RESTRICTION
dc.date.available2018-01-31T18:17:57Z
dc.date.issued2017
dc.date.submitted
dc.identifier.urihttps://hdl.handle.net/2027.42/140790
dc.description.abstractElectric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.
dc.language.isoen_US
dc.subjectAll-electric Ships
dc.subjectModel Predictive Control
dc.subjectHybrid Energy Storage
dc.subjectLoad Fluctuation Mitigation
dc.subjectReal-time Optimization
dc.subjectEnergy Management System
dc.titleControl and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systems
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberHofmann, Heath
dc.contributor.committeememberSun, Jing
dc.contributor.committeememberKolmanovsky, Ilya Vladimir
dc.contributor.committeememberMathieu, Johanna
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/140790/1/junhou_1.pdf
dc.identifier.orcid0000-0001-7116-2945
dc.identifier.name-orcidHou, Jun; 0000-0001-7116-2945en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.