Show simple item record

Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes

dc.contributor.authorYang, Jingjing
dc.contributor.authorCox, Dennis D.
dc.contributor.authorLee, Jong Soo
dc.contributor.authorRen, Peng
dc.contributor.authorChoi, Taeryon
dc.date.accessioned2018-02-05T16:30:37Z
dc.date.available2019-01-07T18:34:37Zen
dc.date.issued2017-12
dc.identifier.citationYang, Jingjing; Cox, Dennis D.; Lee, Jong Soo; Ren, Peng; Choi, Taeryon (2017). "Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes." Biometrics 73(4): 1082-1091.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/141287
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer US
dc.subject.otherSmoothing
dc.subject.otherBasis function
dc.subject.otherBayesian hierarchical model
dc.subject.otherFunctional data analysis
dc.subject.otherGaussian–Wishart process
dc.titleEfficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian–Wishart processes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141287/1/biom12705.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141287/2/biom12705_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141287/3/biom12705-sup-0001-SuppData.pdf
dc.identifier.doi10.1111/biom.12705
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceRasmussen, C. E. and Williams, C. K. I. ( 2006 ). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press.
dc.identifier.citedreferenceHall, P., Horowitz, J. L. ( 2007 ). Methodology and convergence rates for functional linear regression. The Annals of Statistics 35, 70 – 91.
dc.identifier.citedreferenceJames, M. ( 1978 ). The generalized inverse. The Mathematical Gazette 62, 109 – 114.
dc.identifier.citedreferenceKaufman, C. G. and Sain, S. R. ( 2010 ). Bayesian functional ANOVA modeling using gaussian process prior distributions. Bayesian Analysis 5, 123 – 149.
dc.identifier.citedreferenceLee, J. S., Zakeri, I. F., and Butte, N. F. ( 2016 ). Functional principal component analysis and classification methods applied to dynamic energy expenditure measurements in children. Technical Report.
dc.identifier.citedreferenceMatérn, B. ( 1960 ). Spatial variation. Stochastic models and their application to some problems in forest surveys and other sampling investigations.PhD thesis, Meddelanden fran Statens Skogsforskningsinstitut.
dc.identifier.citedreferenceMicchelli, C. A., Rivlin, T. J., and Winograd, S. ( 1976 ). The optimal recovery of smooth functions. Numerische Mathematik 26, 191 – 200.
dc.identifier.citedreferenceMoon, J. K., Vohra, F. A., Valerio, O. S., Puyau, M. R., Butte, N. F. ( 1995 ). Closed‐loop control of carbon dioxide concentration and pressure improves response of room respiration calorimeters. Journal of Nutrition‐Baltimore and Springfield then Bethesda‐ 125, 220 – 220.
dc.identifier.citedreferenceQui nonero Candela, J. E. R. C. and Williams, C. K. I. ( 2007 ). Approximation methods for gaussian process regression. Technical report, Applied Games, Microsoft Research Ltd.
dc.identifier.citedreferenceQuick, H., Banerjee, S., and Carlin, B. P. ( 2013 ). Modeling temporal gradients in regionally aggregated california asthma hospitalization data. The Annals of Applied Statistics 7, 154 – 176.
dc.identifier.citedreferenceRamsay, J. O. and Dalzell, C. ( 1991 ). Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B 53, 539 – 572.
dc.identifier.citedreferenceRamsay, J. O. and Silverman, B. W. ( 2005 ). Functional Data Analysis.Springer Series in Statistics. 2nd edition, New York: Springer‐Verlag. http://www.springer.com/us/book/978038 7400808
dc.identifier.citedreferenceSang, H. and Huang, J. Z. ( 2012 ). A full scale approximation of covariance functions for large spatial data sets. Journal of the Royal Statistical Society: Series B 74, 111 – 132.
dc.identifier.citedreferenceScheipl, F., Staicu, A.‐M., and Greven, S. ( 2015 ). Functional additive mixed models. Journal of Computational and Graphical Statistics 24, 477 – 501.
dc.identifier.citedreferenceShi, J., Wang, B., Murray‐Smith, R., and Titterington, D. ( 2007 ). Gaussian process functional regression modeling for batch data. Biometrics 63, 714 – 723.
dc.identifier.citedreferenceShi, J. Q. and Choi, T. ( 2011 ). Gaussian Process Regression Analysis for Functional Data. Boca Raton, Florida: CRC Press, Taylor and Francis Group.
dc.identifier.citedreferenceStein, M. L. ( 2014 ). Limitations on low rank approximations for covariance matrices of spatial data. Spatial Statistics 8, 1 – 19. Spatial Statistics Miami.
dc.identifier.citedreferenceYang, J. and Ren, P. ( 2016 ). BFDA: A matlab toolbox for bayesian functional data analysis. arXiv preprint arXiv:1604.05224.
dc.identifier.citedreferenceYang, J., Zhu, H., Choi, T., and Cox, D. D. ( 2016 ). Smoothing and mean‐covariance estimation of functional data with a bayesian hierarchical model. Bayesian Analysis 11, 649 – 670.
dc.identifier.citedreferenceYao, F., Müller, H.‐G., and Wang, J.‐L. ( 2005a ). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association 100, 577 – 590.
dc.identifier.citedreferenceYao, F., Müller, H.‐G., and Wang, J.‐L. ( 2005b ). Functional linear regression analysis for longitudinal data. The Annals of Statistics 33, 2873 – 2903.
dc.identifier.citedreferenceYuan, Y. and Johnson, V. E. ( 2012 ). Goodness‐of‐fit diagnostics for bayesian hierarchical models. Biometrics 68, 156 – 164.
dc.identifier.citedreferenceZhu, H., Brown, P. J., and Morris, J. S. ( 2011 ). Robust, adaptive functional regression in functional mixed model framework. Journal of the American Statistical Association 106, 1167 – 1179.
dc.identifier.citedreferenceZhu, H., Yao, F., and Zhang, H. H. ( 2014 ). Structured functional additive regression in reproducing kernel hilbert spaces. Journal of the Royal Statistical Society: Series B 76, 581 – 603.
dc.identifier.citedreferenceBaladandayuthapani, V., Mallick, B. K., Young Hong, M., Lupton, J. R., Turner, N. D., and Carroll, R. J. ( 2008 ). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 64, 64 – 73.
dc.identifier.citedreferenceBanerjee, A., Dunson, D. B., and Tokdar, S. T. ( 2013 ). Efficient Gaussian process regression for large datasets. Biometrika 100, 75 – 89.
dc.identifier.citedreferenceBanerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. ( 2008 ). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B 70, 825 – 848.
dc.identifier.citedreferenceBonferroni, C. E. ( 1936 ). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3 – 62.
dc.identifier.citedreferenceCardot, H., Ferraty, F., and Sarda, P. ( 2003 ). Spline estimators for the functional linear model. Statistica Sinica 13, 571 – 592.
dc.identifier.citedreferenceCortes, C. and Vapnik, V. ( 1995 ). Support‐vector networks. Machine Learning 20, 273 – 297.
dc.identifier.citedreferenceCrainiceanu, C. M. and Goldsmith, A. J. ( 2010 ). Bayesian functional data analysis using winbugs. Journal of Statistical Software 32, 11.
dc.identifier.citedreferenceCressie, N. and Johannesson, G. ( 2008 ). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B 70, 209 – 226.
dc.identifier.citedreferenceDatta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. ( 2016a ). Hierarchical nearest‐neighbor gaussian process models for large geostatistical datasets. Journal of the American Statistical Association 111, 800 – 812.
dc.identifier.citedreferenceDatta, A., Banerjee, S., Finley, A. O., Hamm, N. A. S., and Schaap, M. ( 2016b ). Nonseparable dynamic nearest neighbor gaussian process models for large spatio‐temporal data with an application to particulate matter analysis. The Annals of Applied Statistics 10, 1286 – 1316.
dc.identifier.citedreferenceDawid, A. P. ( 1981 ). Some matrix‐variate distribution theory: notational considerations and a bayesian application. Biometrika 68, 265 – 274.
dc.identifier.citedreferencede Boor, C. ( 1977 ). Computational aspects of optimal recovery. In Micchelli, C. A. and Rivlin, T. J. editors, Optimal Estimation in Approximation Theory, 69 – 91. Boston, MA: Springer US.
dc.identifier.citedreferenceFan, Y., James, G. M., and Radchenko, P. ( 2015 ). Functional additive regression. The Annals of Statistics 43, 2296 – 2325.
dc.identifier.citedreferenceFerraty, F. and Vieu, P. ( 2006 ). Nonparametric Functional Data Analysis: Theory and Practice. New York: Springer‐Verlag.
dc.identifier.citedreferenceFinley, A., Banerjee, S., and Gelfand, A. ( 2015 ). spBayes for large univariate and multivariate point‐referenced spatio‐temporal data models. Journal of Statistical Software 63, 1 – 28.
dc.identifier.citedreferenceGaffney, P. W. and Powell, M. J. D. ( 1976 ). Optimal Interpolation. Springer Berlin Heidelberg.
dc.identifier.citedreferenceGelman, A. and Rubin, D. B. ( 1992 ). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457 – 472.
dc.identifier.citedreferenceGeman, S. and Geman, D. ( 1984 ). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on 6, 721 – 741.
dc.identifier.citedreferenceGibbs, M. N. ( 1998 ). Bayesian Gaussian processes for regression and classification.PhD thesis, UK: University of Cambridge.
dc.identifier.citedreferenceGreen, P. J. and Silverman, B. W. ( 1993 ). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Boca Raton, Florida: CRC Press.
dc.identifier.citedreferenceGromenko, O. and Kokoszka, P. ( 2013 ). Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination. Computational Statistics & Data Analysis 59, 82 – 94.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.