Show simple item record

Coomassie staining provides routine (sub)femtomole in‐gel detection of intact proteoforms: Expanding opportunities for genuine Top‐down Proteomics

dc.contributor.authorNoaman, Nour
dc.contributor.authorAbbineni, Prabhodh S.
dc.contributor.authorWithers, Michael
dc.contributor.authorCoorssen, Jens R.
dc.date.accessioned2018-02-05T16:34:24Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationNoaman, Nour; Abbineni, Prabhodh S.; Withers, Michael; Coorssen, Jens R. (2017). "Coomassie staining provides routine (sub)femtomole in‐gel detection of intact proteoforms: Expanding opportunities for genuine Top‐down Proteomics." ELECTROPHORESIS 38(24): 3086-3099.
dc.identifier.issn0173-0835
dc.identifier.issn1522-2683
dc.identifier.urihttps://hdl.handle.net/2027.42/141479
dc.description.abstractModified colloidal Coomassie Brilliant Blue (cCBB) staining utilising a novel destain protocol and near‐infrared fluorescence detection (nIRFD) rivals the in‐gel protein detection sensitivity (DS) of SYPRO Ruby. However, established DS estimates are likely inaccurate in terms of 2DE‐resolved proteoform ‘spots’ since DS is routinely measured from comparatively diffuse protein ‘bands’ following wide‐well 1DE. Here, cCBB DS for 2DE‐based proteomics was more accurately determined using narrow‐well 1DE. As precise estimates of protein standard monomer concentrations are essential for accurate quantitation, coupling UV absorbance with gel‐based purity assessments is described. Further, as cCBB is compatible with both nIRFD and densitometry, the impacts of imaging method (and image resolution) on DS were assessed. Narrow‐well 1DE enabled more accurate quantitation of cCBB DS for 2DE, achieving (sub)femtomole DS with either nIRFD or densitometry. While densitometry offers comparative simplicity and affordability, nIRFD has the unique potential for enhanced DS with Deep Imaging. Higher‐resolution nIRFD also improved analysis of a 2DE‐resolved proteome, surpassing the DS of standard nIRFD and densitometry, with nIRFD Deep Imaging further maximising proteome coverage. cCBB DS for intact proteins rivals that of mass spectrometry (MS) for peptides in complex mixtures, reaffirming that 2DE‐MS currently provides the most routine, broadly applicable, robust, and information‐rich Top‐down approach to Discovery Proteomics.
dc.publisherThe Royal Society of Chemistry
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTwo‐dimensional gel electrophoresis
dc.subject.otherDensitometry
dc.subject.otherDetection sensitivity
dc.subject.otherFluorescence
dc.subject.otherCoomassie
dc.titleCoomassie staining provides routine (sub)femtomole in‐gel detection of intact proteoforms: Expanding opportunities for genuine Top‐down Proteomics
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141479/1/elps6323.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141479/2/elps6323_am.pdf
dc.identifier.doi10.1002/elps.201700190
dc.identifier.sourceELECTROPHORESIS
dc.identifier.citedreferenceSandberg, A., Buschmann, V., Kapusta, P., Erdmann, R., Wheelock, A. M., Anal. Chem. 2016, 88, 3067 – 3074.
dc.identifier.citedreferencePatton, W. F., Electrophoresis 2002, 21, 1123 – 1144.
dc.identifier.citedreferenceNée, M., Gauci, V. J., Noaman, N., Coorssen, J. R., eLS 2016, 1 – 10.
dc.identifier.citedreferenceCoorssen, J. R., Blank, P. S., Albertorio, F., Bezrukov, L., Kolosova, I., Chen, X., Backlund, P. S., Zimmerberg, J., J.Cell. Sci. 2003, 116, 2087 – 2097.
dc.identifier.citedreferenceCannon‐Carlson, S., Tang, J., Anal. Biochem. 1997, 246, 148 – 150.
dc.identifier.citedreferenceLaemmli, U. K., Nature, 1970, 227, 680 – 685.
dc.identifier.citedreferenceGrimsley, G. R., Pace, C. N., Curr. Protoc. Protein Sci. 2004, 33, 3.1.1–3.1.9.
dc.identifier.citedreferenceChurchward, M. A., Butt, R. H., Lang, J. C., Hsu, K. K., Coorssen, J. R., Proteome Sci. 2005, 3, 5.
dc.identifier.citedreferenceButt, R. H., Pfeifer, T. A., Delaney, A., Grigliatti, T. A., Tetzlaff, W. G., Coorssen, J. R., Mol. Cell. Proteomics 2007, 6, 1574 – 1588.
dc.identifier.citedreferenceLong, G. L., Windefordner, J. D., Anal. Chem. 1983, 55, 712 – 724.
dc.identifier.citedreferenceSidak, Z., J. Am. Stat. Assoc. 1967, 62, 626 – 633.
dc.identifier.citedreferenceTal, M., Silberstein, A., Nusser, E., J. Biol. Chem. 1985, 260, 9976 – 9980.
dc.identifier.citedreferenceWang, X., Li, X., Li, Y., Biotechnol. Lett. 2007, 29, 1599 – 1603.
dc.identifier.citedreferenceChoi, J.‐K., Yoon, S.‐H., Hong, H.‐Y., Choi, D.‐K., Yoo, G.‐S., Anal. Biochem. 1996, 236, 82 – 84.
dc.identifier.citedreferencePink, M., Verma, N., Rettenmeier, A. W., Schmitz‐Spanke, S., Electrophoresis 2010, 31, 593 – 598.
dc.identifier.citedreferenceNeuhoff, V., Stamm, R., Pardowitz, I., Arold, N., Ehrhardt, W., Taube, D., Electrophoresis 1990, 11, 101 – 117.
dc.identifier.citedreferenceMiura, K., Proteomics 2003, 3, 1097 – 1108.
dc.identifier.citedreferenceSengar, R. S., Upadhyay, A. K., Singh, M., Gadre, V. M., Biomed. Signal Process Control 2016, 25, 62 – 75.
dc.identifier.citedreferenceSerra‐Soriano, M., Navarro, J. A., Genoves, A., Pallas, V., J. Proteomics, 2015, 124, 11 – 24.
dc.identifier.citedreferenceLincet, H., Guevel, B., Pineau, C., Allouche, S., Lemoisson, E., Poulain, L., Gauduchon, P., J. Proteomics 2012, 75, 1157 – 1169.
dc.identifier.citedreferenceStessl, M., Noe, C. R., Lachmann, B., Electrophoresis 2009, 30, 325 – 328.
dc.identifier.citedreferenceClark, B. N., Gutstein, H. B., Proteomics, 2008, 8, 1197 – 1203.
dc.identifier.citedreferencePartridge, M. A., Gopinath, S., Myers, S. J., Coorssen, J. R., J. Chem. Biol. 2016, 9, 9 – 18.
dc.identifier.citedreferenceStrijkstra, A., Trautwein, K., Roesler, S., Feenders, C., Danzer, D., Riemenschneider, U., Blasius, B., Rabus, R., Proteomics 2016, 16, 1975 – 1979.
dc.identifier.citedreferenceCongdon, R. W., Muth, G. W., Splittgerber, A. G., Anal. Biochem. 1993, 213, 407 – 413.
dc.identifier.citedreferenceWilson, C.M., Anal. Biochem. 1979, 96, 263 – 278.
dc.identifier.citedreferenceHawkridge, A.M., Practical Considerations and Current Limitations in Quantitative Mass Spectrometry‐based Proteomics, The Royal Society of Chemistry, United Kingdom 2014, pp. 1 – 25.
dc.identifier.citedreferenceThakur, S. S., Geiger, T., Chatterjee, B., Bandilla, P., Fröhlich, F., Cox, J., Mann, M., Mol. Cell. Proteomics 2011, 10, M110.003699.
dc.identifier.citedreferenceLin, J. F., Chen, Q. X., Tian, H. Y., Gao, X., Yu, M. L., Xu, G. J., Zhao, F. K., Anal. Bioanal. Chem. 2008, 390, 1765 – 1773.
dc.identifier.citedreferenceButt, R. H., Coorssen, J. R., J. Proteome Res. 2006, 5, 437 – 448.
dc.identifier.citedreferenceButt, R. H., Coorssen, J. R., J. Proteome Res. 2005, 4, 982 – 991.
dc.identifier.citedreferenceWright, E. P., Partridge, M. A., Padula, M. P., Gauci, V. J., Malladi, C. S., Coorssen, J. R, Proteomics 2014, 14, 872 – 889.
dc.identifier.citedreferenceWright, E. P., Prasad, K. A., Padula, M. P., Coorssen, J. R., PLoS One 2014, 9, e86058.
dc.identifier.citedreferenceMiller, I., Eberini, I., Gianazza, E., Proteomics 2010, 10, 586 – 610.
dc.identifier.citedreferenceRogowska‐Wrzesinska, A., Le Bihan, M. C., Thaysen‐Andersen, M., Roepstorff, P., J. Proteomics 2013, 88, 4 – 13.
dc.identifier.citedreferenceWittmann‐Liebold, B., Graack, H. R., Pohl, T., Proteomics 2006, 6, 4688 – 4703.
dc.identifier.citedreferenceOliveira, B. M., Coorssen, J. R., Martins‐De‐Souza, D., J. Proteomics 2014, 104, 140 – 150.
dc.identifier.citedreferenceCoorssen, J., Yergey, A., Proteomes 2015, 3, 440 – 453.
dc.identifier.citedreferenceMagdeldin, S., Enany, S., Yoshida, Y., Xu, B., Zhang, Y., Zureena, Z, Lokamani, I., Yaoita, E., Yamamoto, T., Clin. Proteomics 2014, 11, 1 – 10.
dc.identifier.citedreferenceJungblut, J. R., Holzhütter, H. G., Apweiler, R., Schlüter, H., Chem. Cent. J., 2008, 2, 16.
dc.identifier.citedreferenceThiede, B., Koehler, C. J., Strozynski, M., Treumann, A., Stein, R., Zimny‐Arndt, U., Schmid, M., Jungblut, P. R., Mol. Cell. Proteomics 2013, 12, 529 – 538.
dc.identifier.citedreferenceGauci, V. J., Padula, M. P., Coorssen, J. R., J. Proteomics 2013, 90, 96 – 106.
dc.identifier.citedreferenceGauci, V. J., Wright, E. P., Coorssen, J. R., J.Chem. Biol. 2011, 4, 3 – 29.
dc.identifier.citedreferenceButt, R. H., Coorssen, J. R., Mol. Cell. Proteomics 2013, 12, 3834 – 3850.
dc.identifier.citedreferenceHarris, L. R., Churchward, M. A., Butt, R. H., Coorssen, J. R., J. Proteome Res. 2007, 6, 1418 – 1425.
dc.identifier.citedreferencePatton, W. F., J.Chromatogr. A 1995, 689, 55 – 87.
dc.identifier.citedreferenceCoorssen, J. R., Blank, P. S., Albertorio, F., Bezrukov, L., Kolosova, I., Backlund, P. S., Zimmerberg, J., Anal. Biochem. 2002, 307, 54 – 62.
dc.identifier.citedreferenceLuo, S., Wehr, N. B., Levine, R. L., Anal. Biochem. 2006, 350, 233 – 238.
dc.identifier.citedreferenceSzule, J. A., Jarvis, S. E., Hibbert, J. E., Spafford, J. D., Braun, J. E., Zamponi, G. W., Wessel, G. M., Coorssen, J. R., J.Biol. Chem. 2003, 278, 24251 – 24254.
dc.identifier.citedreferenceNeuhoff, V., Arold, N., Taube, D., Ehrhardt, W., Electrophoresis 1988, 9, 255 – 262.
dc.identifier.citedreferenceNeuhoff, V., Stamm, R., Eibl, H., Electrophoresis 1985, 6, 427 – 448.
dc.identifier.citedreferenceKang, D., Gho, Y. S., Suh, M., Kang, C., Bull. Korean Chem. Soc. 2002, 23, 1511 – 1512.
dc.identifier.citedreferenceChoi, J. K., Chae, H. Z., Hwang, S. Y., Choi, H. I., Jin, L. T., Yoo, G. S., Electrophoresis 2004, 25, 1136 – 1141.
dc.identifier.citedreferenceCandiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L., Righetti, P. G., Electrophoresis 2004, 25, 1327 – 1333.
dc.identifier.citedreferenceWinkler, C., Denker, K., Wortelkamp, S., Sickmann, A., Electrophoresis 2007, 28, 2095 – 2099.
dc.identifier.citedreferenceDong, W., Wang, T., Wang, F., Zhang, J., PloS One 2011, 6, e22394.
dc.identifier.citedreferenceChevalier, F., Rofidal, V., Vanova, P., Bergoin, A., Rossignol, M., Phytochemistry 2004, 65, 1499 – 1506.
dc.identifier.citedreferenceSmejkal, G. B., Robinson, M. H., Lazarev, A., Electrophoresis 2004, 25, 2511 – 2519.
dc.identifier.citedreferenceBerggren, K. N., Schulenberg, B., Lopez, M. F., Steinberg, T. H., Bogdanova, A., Smejkal, G., Wang, A., Patton, W. F., Proteomics 2002, 2, 486 – 498.
dc.identifier.citedreferenceSteinberg, T. H., Haugland, R. P., Singer, V. L., Anal. Biochem. 1996, 239, 238 – 245.
dc.identifier.citedreferenceSteinberg, T. H., Jones, L. J., Haugland, R. P., Singer, V. L., Anal. Biochem. 1996, 239, 223 – 237.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.