Show simple item record

Flow‐aligned, single‐shot fiber diffraction using a femtosecond X‐ray free‐electron laser

dc.contributor.authorPopp, David
dc.contributor.authorLoh, N. Duane
dc.contributor.authorZorgati, Habiba
dc.contributor.authorGhoshdastider, Umesh
dc.contributor.authorLiow, Lu Ting
dc.contributor.authorIvanova, Magdalena I.
dc.contributor.authorLarsson, Mårten
dc.contributor.authorDePonte, Daniel P.
dc.contributor.authorBean, Richard
dc.contributor.authorBeyerlein, Kenneth R.
dc.contributor.authorGati, Cornelius
dc.contributor.authorOberthuer, Dominik
dc.contributor.authorArnlund, David
dc.contributor.authorBrändén, Gisela
dc.contributor.authorBerntsen, Peter
dc.contributor.authorCascio, Duilio
dc.contributor.authorChavas, Leonard M. G.
dc.contributor.authorChen, Joe P. J.
dc.contributor.authorDing, Ke
dc.contributor.authorFleckenstein, Holger
dc.contributor.authorGumprecht, Lars
dc.contributor.authorHarimoorthy, Rajiv
dc.contributor.authorMossou, Estelle
dc.contributor.authorSawaya, Michael R.
dc.contributor.authorBrewster, Aaron S.
dc.contributor.authorHattne, Johan
dc.contributor.authorSauter, Nicholas K.
dc.contributor.authorSeibert, Marvin
dc.contributor.authorSeuring, Carolin
dc.contributor.authorStellato, Francesco
dc.contributor.authorTilp, Thomas
dc.contributor.authorEisenberg, David S.
dc.contributor.authorMesserschmidt, Marc
dc.contributor.authorWilliams, Garth J.
dc.contributor.authorKoglin, Jason E.
dc.contributor.authorMakowski, Lee
dc.contributor.authorMillane, Rick P.
dc.contributor.authorForsyth, Trevor
dc.contributor.authorBoutet, Sébastien
dc.contributor.authorWhite, Thomas A.
dc.contributor.authorBarty, Anton
dc.contributor.authorChapman, Henry
dc.contributor.authorChen, Swaine L.
dc.contributor.authorLiang, Mengning
dc.contributor.authorNeutze, Richard
dc.contributor.authorRobinson, Robert C.
dc.date.accessioned2018-02-05T16:47:13Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationPopp, David; Loh, N. Duane; Zorgati, Habiba; Ghoshdastider, Umesh; Liow, Lu Ting; Ivanova, Magdalena I.; Larsson, Mårten ; DePonte, Daniel P.; Bean, Richard; Beyerlein, Kenneth R.; Gati, Cornelius; Oberthuer, Dominik; Arnlund, David; Brändén, Gisela ; Berntsen, Peter; Cascio, Duilio; Chavas, Leonard M. G.; Chen, Joe P. J.; Ding, Ke; Fleckenstein, Holger; Gumprecht, Lars; Harimoorthy, Rajiv; Mossou, Estelle; Sawaya, Michael R.; Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.; Seibert, Marvin; Seuring, Carolin; Stellato, Francesco; Tilp, Thomas; Eisenberg, David S.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Makowski, Lee; Millane, Rick P.; Forsyth, Trevor; Boutet, Sébastien ; White, Thomas A.; Barty, Anton; Chapman, Henry; Chen, Swaine L.; Liang, Mengning; Neutze, Richard; Robinson, Robert C. (2017). "Flow‐aligned, single‐shot fiber diffraction using a femtosecond X‐ray free‐electron laser." Cytoskeleton 74(12): 472-481.
dc.identifier.issn1949-3584
dc.identifier.issn1949-3592
dc.identifier.urihttps://hdl.handle.net/2027.42/142153
dc.description.abstractA major goal for X‐ray free‐electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one‐dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F‐actin, and amyloid fibrils), which when intersected by femtosecond X‐ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F‐actin can be flow‐aligned to a disorientation of approximately 5 degrees. Using this XFEL‐based technique, we determine that gelsolin amyloids are comprised of stacked β‐strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α‐synuclein amyloids.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfiber diffraction
dc.subject.otherfilament systems
dc.subject.otherXFEL
dc.titleFlow‐aligned, single‐shot fiber diffraction using a femtosecond X‐ray free‐electron laser
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142153/1/cm21378.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142153/2/cm21378_am.pdf
dc.identifier.doi10.1002/cm.21378
dc.identifier.sourceCytoskeleton
dc.identifier.citedreferenceNag, S., Ma, Q., Wang, H., Chumnarnsilpa, S., Lee, W. L., Larsson, M., … Robinson, R. C. ( 2009 ). Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proceedings of the National Academy of Sciences of the United States of America, 106, 13713 – 13718.
dc.identifier.citedreferenceBarty, A., Kirian, R. A., Maia, F. R., Hantke, M., Yoon, C. H., White, T. A., & Chapman, H. ( 2014 ). Cheetah: Software for high‐throughput reduction and analysis of serial femtosecond X‐ray diffraction data. Journal of Applied Crystallography, 47, 1118 – 1131.
dc.identifier.citedreferenceBernal, J. D., & Fankuchen, I. ( 1941 ). X‐ray and crystallographic studies of plant virus preparations: I. Introduction and preparation of specimens II. Modes of aggregation of the virus particles. Journal of General Physiology, 25, 111 – 146.
dc.identifier.citedreferenceBogan, M., Starodub, D., Hampton, C. Y., & Sierra, R. G. ( 2010 ). Single particle coherent diffractive imaging with a soft X‐ray free electron laser: Towards soot aerosol morphology. Journal of Physics B, 43, 194013.
dc.identifier.citedreferenceBoutet, S., & Williams, G. J. ( 2010 ). The Coherent X‐ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New Journal of Physics, 12,
dc.identifier.citedreferenceBoutet, S., Lomb, L., Williams, G. J., Barends, T. R., Aquila, A., Doak, R. B., … Schlichting, I. ( 2012 ). High‐resolution protein structure determination by serial femtosecond crystallography. Science, 337, 362 – 364.
dc.identifier.citedreferenceBragg, W. L. 1913. The diffraction of short electromagnetic waves by a crystal. Proceedings of the Cambridge Philosophical Society, 17, 43 – 57.
dc.identifier.citedreferenceBrinton, C. C., Jr. ( 1965 ). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Transactions of the New York Academy of Sciences, 27, 1003 – 1054.
dc.identifier.citedreferenceBrizitsky, V. I., Vinogradov, G. V., Isayev, A. I., & Podolsky, Y. Y. ( 1978 ). Extensional stresses during polymer flow in ducts. Journal of Applied Polymer Science, 22, 751 – 767.
dc.identifier.citedreferenceBullitt, E., & Makowski, L. ( 1995 ). Structural polymorphism of bacterial adhesion pili. Nature, 373, 164 – 167.
dc.identifier.citedreferenceChen, S. L., Hung, C. S., Xu, J., Reigstad, C. S., Magrini, V., Sabo, A., … Gordon, J. I. ( 2006 ). Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proceedings of the National Academy of Sciences of the United States of America, 103, 5977 – 5982.
dc.identifier.citedreferenceDePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. ( 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. Journal of Physics D: Applied Physics, 41, 195505.
dc.identifier.citedreferenceDerman, A. I., Becker, E. C., Truong, B. D., Fujioka, A., Tucey, T. M., Erb, M. L., … Pogliano, J. ( 2009 ). Phylogenetic analysis identifies many uncharacterized actin‐like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Molecular Microbiology, 73, 534 – 552.
dc.identifier.citedreferenceDodd, D. C., & Eisenstein, B. I. ( 1982 ). Antigenic quantitation of type 1 fimbriae on the surface of Escherichia coli cells by an enzyme‐linked immunosorbent inhibition assay. Infection & Immunity, 38, 764 – 773.
dc.identifier.citedreferenceDu, H. N., Tang, L., Luo, X. Y., Li, H. T., Hu, J., Zhou, J. W., & Hu, H. Y. ( 2003 ). peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha‐synuclein. Biochemistry, 42, 8870 – 8878.
dc.identifier.citedreferenceEl‐Agnaf, O. M., & Irvine, G. B. ( 2000 ). Review: formation and properties of amyloid‐like fibrils derived from alpha‐synuclein and related proteins. Journal of Structural Biology, 130, 300 – 309.
dc.identifier.citedreferenceEmma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J. … Galayda, J. ( 2010 ). First lasing and operation of an angstrom‐wavelength free‐electron laser. Nature of Photonics, 4, 641 – 647.
dc.identifier.citedreferenceFadika, G. O., & Baumann, M. ( 2002 ). Peptides corresponding to gelsolin derived amyloid of the finnish type (AGelFIN) adopt two distinct forms in solution of which only one can polymerize into amyloid fibrils and form complexes with apoE. Amyloid, 9, 75 – 82.
dc.identifier.citedreferenceFisher, K. H., Deane, C. M., & Wakefield, J. G. ( 2008 ). The functional domain grouping of microtubule associated proteins. Communicative & Integrative Biology, 1, 47 – 50.
dc.identifier.citedreferenceFlory, P. J. ( 1956 ). Phase equilibria in solutions of rod‐like particles. Proceedings of the Royal Society A, 234, 73 – 89.
dc.identifier.citedreferenceFranklin, R. E., & Gosling, R. G. ( 1953 ). Molecular configuration in sodium thymonucleate. Nature, 171, 740 – 741.
dc.identifier.citedreferenceGeibel, S., & Waksman, G. ( 2011 ). Crystallography and electron microscopy of chaperone/usher pilus systems. Advances in Experimental Medicine and Biology, 715, 159 – 174.
dc.identifier.citedreferenceGiasson, B. I., Murray, I. V., Trojanowski, J. Q., & Lee, V. M. ( 2001 ). A hydrophobic stretch of 12 amino acid residues in the middle of alpha‐synuclein is essential for filament assembly. The Journal of Biological Chemistry, 276, 2380 – 2386.
dc.identifier.citedreferenceGong, M., & Makowski, L. ( 1992 ). Helical structure of P pili from Escherichia coli. Evidence from X‐ray fiber diffraction and scanning transmission electron microscopy. Journal of Molecular Biology, 228, 735 – 742.
dc.identifier.citedreferenceHahn, E., Wild, P., Hermanns, U., Sebbel, P., Glockshuber, R., Häner, M., … Muller, S. A. ( 2002 ). Exploring the 3D molecular architecture of Escherichia coli type 1 pili. Journal of Molecular Biology, 323, 845 – 857.
dc.identifier.citedreferenceHattne, J., Echols, N., Tran, R., Kern, J., Gildea, R. J., Brewster, A. S., … Sauter, N. K.. ( 2014 ). Accurate macromolecular structures using minimal measurements from X‐ray free‐electron lasers. Nature Methods, 11, 545 – 548.
dc.identifier.citedreferenceHolmes, K. C., & Blow, D. M. ( 1965 ). The use of x‐ray diffraction in the study of protein and nucleic acid structure. Methods of Biochemical Analysis, 13, 113 – 239.
dc.identifier.citedreferenceHelfer, E., Panine, P., Carlier, M. F., & Davidson, P. ( 2005 ). The interplay between viscoelastic and thermodynamic properties determines the birefringence of F‐actin gels. Biophysical Journal, 89, 543 – 553.
dc.identifier.citedreferenceHolmes, K. C., Popp, D., Gebhard, W., & Kabsch, W. ( 1990 ). Atomic model of the actin filament. Nature, 347, 44 – 49.
dc.identifier.citedreferenceHung, D. L., Knight, S. D., Woods, R. M., Pinkner, J. S., & Hultgren, S. J. ( 1996 ). Molecular basis of two subfamilies of immunoglobulin‐like chaperones. EMBO Journal, 15, 3792 – 3805.
dc.identifier.citedreferenceHuxley, H. E. ( 1953 ). X‐ray analysis and the problem of muscle. Proceedings of the Royal Society London B: Biological Sciences, 141, 59 – 62.
dc.identifier.citedreferenceKlug, A., Crick, F. H.C., & Wyckoff, H. W. ( 1958 ). Diffraction by helical structures. Acta Crystallographica, 11, 199 – 213.
dc.identifier.citedreferenceLe Trong, I. Aprikian, P., Kidd, B. A., Thomas, W. E., Sokurenko, E. V., & Stenkamp, R. E. ( 2010 ). Donor strand exchange and conformational changes during E. coli fimbrial formation. Journal of Structural Biology, 172, 380 – 388.
dc.identifier.citedreferenceLoh, N. T., & Elser, V. ( 2009 ). Reconstruction algorithm for single‐particle diffraction imaging experiments. Physical Review E: Statistical, Nonlinear, Soft Matter Physics, 80, 026705.
dc.identifier.citedreferenceLoh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., … Bogan, M. J. ( 2012 ). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486, 513 – 517.
dc.identifier.citedreferenceMillane, R. P. ( 2010 ). In International Tables for Crystallography IUCr. Chapter 4.5 (pp. 568 – 583 ).
dc.identifier.citedreferenceNag, S., Larsson, M., Robinson, R. C., & Burtnick, L. D. ( 2013 ). Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken), 70, 360 – 384.
dc.identifier.citedreferenceNamba, K., & Stubbs, G. ( 1986 ). Structure of tobacco mosaic virus at 3.6 Å resolution: implications for assembly. Science, 231, 1401 – 1406.
dc.identifier.citedreferenceNeutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. ( 2000 ). Potential for biomolecular imaging with femtosecond X‐ray pulses. Nature, 406, 752 – 757.
dc.identifier.citedreferenceOda, T., Makino, K., Yamashita, I., Namba, K., & Maeda, Y. ( 1998 ). Effect of the length and effective diameter of F‐actin on the filament orientation in liquid crystalline sols measured by x‐ray fiber diffraction. Biophysical Journal, 75, 2672 – 2681.
dc.identifier.citedreferenceOda, T., Iwasa, M., Aihara, T., Maeda, Y., & Narita, A. ( 2009 ). The nature of the globular‐ to fibrous‐actin transition. Nature, 457, 441 – 445.
dc.identifier.citedreferenceOnsager, L. ( 1949 ). The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 51, 627 – 659.
dc.identifier.citedreferenceOosawa, F., & Asakura, S. ( 1975 ). Thermodynamics of the polymerization of proteins. London: Academic Press.
dc.identifier.citedreferencePilhofer, M., Ladinsky, M. S., McDowall, A. W., Petroni, G., & Jensen, G. J. 2011. Microtubules in bacteria: Ancient tubulins build a five‐protofilament homolog of the eukaryotic cytoskeleton. PLoS Biology, 9, e1001213.
dc.identifier.citedreferencePolanyi, M. ( 1921 ) Das Röntgen‐Faserdiagramm (Erste Mitteilung). Zoological Physics, 7, 149 – 180.
dc.identifier.citedreferencePolanyi, M., & Weissenberg, K. ( 1923 ). Das Röntgen‐Faserdiagramm (Zweite Mitteilung). Zoological Physics, 9, 123 – 130.
dc.identifier.citedreferencePopp, D., Lednev, V. V., & Jahn, W. ( 1987 ). Methods of preparing well‐orientated sols of f‐actin containing filaments suitable for X‐ray diffraction. Journal of Molecular Biology, 197, 679 – 684.
dc.identifier.citedreferencePopp, D., Narita, A., Oda, T., Fujisawa, T., Matsuo, H., Nitanai, Y., … Maeda, Y. ( 2008 ). Molecular structure of the ParM polymer and the mechanism leading to its nucleotide‐driven dynamic instability. EMBO Journal 27, 570 – 579.
dc.identifier.citedreferencePopp, D., & Robinson, R. C. ( 2011 ). Many ways to build an actin filament. Molecular Microbiology, 80, 300 – 308.
dc.identifier.citedreferencePopp, D., Narita, A., Lee, L. J., Ghoshdastider, U., Xue, B., Srinivasan, R.,… Robinson, R. C. ( 2012 ). Novel actin‐like filament structure from Clostridium tetani. The Journal of Biological Chemistry, 287, 21121 – 21129.
dc.identifier.citedreferenceRambaran, R. N., & Serpell, L. C. ( 2008 ). Amyloid fibrils: abnormal protein assembly. Prion, 2, 112 – 117.
dc.identifier.citedreferenceSolomon, J. P., Page, L. J., Balch, W. E., & Kelly, J. W. ( 2012 ). Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Critical Reviews in Biochemistry and Molecular Biology, 47, 282 – 296.
dc.identifier.citedreferenceSpence, J. C., Weierstall, U., & Chapman, H. N. ( 2012 ). X‐ray lasers for structural and dynamic biology. Reports on Progress in Physics, 75, 102601.
dc.identifier.citedreferenceSpudich, J. A., & Watt, S. ( 1971 ). The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin‐troponin complex with actin and the proteolytic fragments of myosin. The Journal of Biological Chemistry, 246, 4866 – 4871.
dc.identifier.citedreferenceSuzuki, A., Maeda, T., & Ito, T. ( 1991 ). Formation of liquid crystalline phase of actin filament solutions and its dependence on filament length as studied by optical birefringence. Biophysical Journal, 59, 25 – 30.
dc.identifier.citedreferenceUribe, R., & Jay, D. ( 2009 ). A review of actin binding proteins: new perspectives. Molecular Biology Reports, 36, 121 – 125.
dc.identifier.citedreferenceWang, H., Robinson, R. C., & Burtnick, L. D. ( 2010 ). The structure of native G‐actin. Cytoskeleton (Hoboken), 67, 456 – 465.
dc.identifier.citedreferenceWatson, J. D., & Crick, F. H. ( 1953 ). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 171, 737 – 738.
dc.identifier.citedreferenceWilkins, M. H., Stokes, A. R., & Wilson, H. R. ( 1953 ). Molecular structure of deoxypentose nucleic acids. Nature, 171, 738 – 740.
dc.identifier.citedreferenceWille, H., Bian, W., McDonald, M., Kendall, A., Colby, D. W., Bloch, L., … Stubbs, G. ( 2009 ). Natural and synthetic prion structure from X‐ray fiber diffraction. Proceedings of the National Academy of Sciences of the United States of America, 106, 16990 – 16995.
dc.identifier.citedreferenceWurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K., & Schembri, M. A. ( 2013 ). Chaperone‐usher fimbriae of Escherichia coli. PLoS One, 8, e52835.
dc.identifier.citedreferenceYamashita, I., Hasegawa, K., Suzuki, H., Vonderviszt, F., Mimori‐Kiyosue, Y., & Namba, K. ( 1998a ). Structure and switching of bacterial flagellar filaments studied by X‐ray fiber diffraction. Nature of Structural Biology, 5, 125 – 132.
dc.identifier.citedreferenceYamashita, I., Suzuki, H., & Namba, K. ( 1998b ). Multiple‐step method for making exceptionally well‐oriented liquid‐crystalline sols of macromolecular assemblies. Journal of Molecular Biology, 278, 609 – 615.
dc.identifier.citedreferenceZavialov, A., Zav’yalova, G., Korpela, T., & Zav’yalov, V. ( 2007 ). FGL chaperone‐assembled fimbrial polyadhesins: anti‐immune armament of Gram‐negative bacterial pathogens. FEMS Microbiology Reviews, 31, 478 – 514.
dc.identifier.citedreferenceFriedrich, W., Knipping, P., & Laue, M. ( 1912 ). Interferenz‐Erscheinungen bei Röntgenstrahlen. Sitzber d bayer Akad d. Wiss. München, 42, 303 – 322.
dc.identifier.citedreferenceGeddes, A. J., Parker, K. D., Atkins, E. D., & Beighton, E. ( 1968 ). “ Cross‐beta” conformation in proteins. Journal of Molecular Biology, 32, 343 – 358.
dc.identifier.citedreferenceArnott, S. ( 1980 ). In A. D. French & K. H. Gardner (Eds.), Fiber Diffraction Methods Vol. 141 ACS Symposium Series (pp. 1–30).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.