Show simple item record

Inferring the geographic origin of a range expansion: Latitudinal and longitudinal coordinates inferred from genomic data in an ABC framework with the program x‐origin

dc.contributor.authorHe, Qixin
dc.contributor.authorPrado, Joyce R.
dc.contributor.authorKnowles, Laura Lacey
dc.date.accessioned2018-02-05T16:49:03Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationHe, Qixin; Prado, Joyce R.; Knowles, Laura Lacey (2017). "Inferring the geographic origin of a range expansion: Latitudinal and longitudinal coordinates inferred from genomic data in an ABC framework with the program x‐origin." Molecular Ecology 26(24): 6908-6920.
dc.identifier.issn0962-1083
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/2027.42/142260
dc.description.abstractClimatic or environmental change is not only driving distributional shifts in species today, but it has also caused distributions to expand and contract in the past. Inferences about the geographic locations of past populations especially regions that served as refugia (i.e., source populations) and migratory routes are a challenging endeavour. Refugial areas may be evidenced from fossil records or regions of temporal stability inferred from ecological niche models. Genomic data offer an alternative and broadly applicable source of information about the locality of refugial areas, especially relative to fossil data, which are either unavailable or incomplete for most species. Here, we present a pipeline we developed (called x‐origin) for statistically inferring the geographic origin of range expansion using a spatially explicit coalescent model and an approximate Bayesian computation testing framework. In addition to assessing the probability of specific latitudinal and longitudinal coordinates of refugial or source populations, such inferences can also be made accounting for the effects of temporal and spatial environmental heterogeneity, which may impact migration routes. We demonstrate x‐origin with an analysis of genomic data collected in the Collared pika that underwent postglacial expansion across Alaska, as well as present an assessment of its accuracy under a known model of expansion to validate the approach.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrange expansion
dc.subject.otherrefugia inference
dc.subject.otherniche modeling
dc.subject.otherapproximate Bayesian computation
dc.subject.otherΨ‐statistics
dc.titleInferring the geographic origin of a range expansion: Latitudinal and longitudinal coordinates inferred from genomic data in an ABC framework with the program x‐origin
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142260/1/mec14380-sup-0002-FigS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142260/2/mec14380_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142260/3/mec14380-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142260/4/mec14380-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142260/5/mec14380.pdf
dc.identifier.doi10.1111/mec.14380
dc.identifier.sourceMolecular Ecology
dc.identifier.citedreferenceRamachandran, S., Deshpande, O., Roseman, C. C., Rosenberg, N. A., Feldman, M. W., & Cavalli‐Sforza, L. L. ( 2005 ). Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 44 ), 15942 – 15947. https://doi.org/10.1073/pnas.0507611102
dc.identifier.citedreferenceLanier, H. C., Massatti, R., He, Q., Olson, L. E., & Knowles, L. L. ( 2015 ). Colonization from divergent ancestors: Glaciation signatures on contemporary patterns of genomic variation in Collared Pikas ( Ochotona collaris ). Molecular Ecology, 24 ( 14 ), 3688 – 3705. https://doi.org/10.1111/mec.13270
dc.identifier.citedreferenceLanier, H. C., & Olson, L. E. ( 2009 ). Inferring divergence times within pikas ( Ochotona spp.) using mtDNA and relaxed molecular dating techniques. Molecular Phylogenetics and Evolution, 53 ( 1 ), 1 – 12. https://doi.org/10.1016/j.ympev.2009.05.035
dc.identifier.citedreferenceLanier, H. C., & Olson, L. E. ( 2013 ). Deep barriers, shallow divergences: Reduced phylogeographical structure in the collared pika (Mammalia: Lagomorpha: Ochotona collaris ). Journal of Biogeography, 40 ( 3 ), 466 – 478. https://doi.org/10.1111/jbi.12035
dc.identifier.citedreferenceMassatti, R., & Knowles, L. L. ( 2016 ). Contrasting support for alternative models of genomic variation based on microhabitat preference: Species‐specific effects of climate change in alpine sedges. Molecular Ecology, 25 ( 16 ), 3974 – 3986. https://doi.org/10.1111/mec.13735
dc.identifier.citedreferenceMcRae, B. H., & Beier, P. ( 2007 ). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104 ( 50 ), 19885 – 19890. https://doi.org/10.1073/pnas.0706568104
dc.identifier.citedreferenceMcRae, B. H., & Nürnberger, B. ( 2006 ). Isolation by resistance. Evolution, 60 ( 8 ), 1551 – 1561. https://doi.org/10.1554/05-321.1
dc.identifier.citedreferenceOlave, M., He, Q., & Knowles, L. L. (unpublished data). Evidence for shared refugia based on allele frequency asymmetries of genomic data among five alpine Alaskan small mammal species.
dc.identifier.citedreferencePeter, B. M., & Slatkin, M. ( 2013 ). Detecting range expansions from genetic data. Evolution, 67 ( 11 ), 3274 – 3289. https://doi.org/10.1111/evo.12202
dc.identifier.citedreferencePetkova, D., Novembre, J., & Stephens, M. ( 2016 ). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48 ( 1 ), 94 – 100. https://doi.org/10.1038/ng.3464
dc.identifier.citedreferenceRay, N., Currat, M., Berthier, P., & Excoffier, L. ( 2005 ). Recovering the geographic origin of early modern humans by realistic and spatially explicit simulations. Genome Research, 15 ( 8 ), 1161 – 1167. https://doi.org/10.1101/gr.3708505
dc.identifier.citedreferenceRay, N., Currat, M., & Excoffier, L. ( 2003 ). Intra‐deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution, 20 ( 1 ), 76 – 86. https://doi.org/10.1093/molbev/msg009
dc.identifier.citedreferenceRay, N., Currat, M., Foll, M., & Excoffier, L. ( 2010 ). SPLATCHE2: A spatially explicit simulation framework for complex demography, genetic admixture and recombination. Bioinformatics, 26 ( 23 ), 2993 – 2994. https://doi.org/10.1093/bioinformatics/btq579
dc.identifier.citedreferenceSindato, C., Stevens, K. B., Karimuribo, E. D., Mboera, L. E. G., Paweska, J. T., & Pfeiffer, D. U. ( 2016 ). Spatial heterogeneity of habitat suitability for rift valley fever occurrence in Tanzania: An ecological niche modelling approach. PLOS Neglected Tropical Diseases, 10 ( 9 ), e0005002. https://doi.org/10.1371/journal.pntd.0005002
dc.identifier.citedreferenceTheis, A., Ronco, F., Indermaur, A., Salzburger, W., & Egger, B. ( 2014 ). Adaptive divergence between lake and stream populations of an East African cichlid fish. Molecular Ecology, 23 ( 21 ), 5304 – 5322. https://doi.org/10.1111/mec.12939
dc.identifier.citedreferenceVenables, W. N., & Ripley, B. D. ( 2002 ). Modern applied statistics with S (Fourth). New York, NY: Springer. https://doi.org/10.1007/978-0-387-21706-2
dc.identifier.citedreferenceWaltari, E., & Hickerson, M. J. ( 2013 ). Late Pleistocene species distribution modelling of North Atlantic intertidal invertebrates. Journal of Biogeography, 40 ( 2 ), 249 – 260. https://doi.org/10.1111/j.1365-2699.2012.02782.x
dc.identifier.citedreferenceWaltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. ( 2007 ). Locating pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS ONE, 2 ( 7 ), e563. https://doi.org/10.1371/journal.pone.0000563
dc.identifier.citedreferenceWang, C., Zöllner, S., & Rosenberg, N. A. ( 2012 ). A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLOS Genetics, 8 ( 8 ), e1002886. https://doi.org/10.1371/journal.pgen.1002886
dc.identifier.citedreferenceWegmann, D., & Excoffier, L. ( 2010 ). Bayesian inference of the demographic history of Chimpanzees. Molecular Biology and Evolution, 27 ( 6 ), 1425 – 1435. https://doi.org/10.1093/molbev/msq028
dc.identifier.citedreferenceWegmann, D., Leuenberger, C., & Excoffier, L. ( 2009 ). Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182 ( 4 ), 1207 – 1218. https://doi.org/10.1534/genetics.109.102509
dc.identifier.citedreferenceWegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. ( 2010 ). ABCtoolbox: A versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 11, 116. https://doi.org/10.1186/1471-2105-11-116
dc.identifier.citedreferenceAlvarado‐Serrano, D. F., & Hickerson, M. J. ( 2016 ). Spatially explicit summary statistics for historical population genetic inference. Methods in Ecology and Evolution, 7 ( 4 ), 418 – 427. https://doi.org/10.1111/2041-210X.12489
dc.identifier.citedreferenceAusterlitz, F., Jung‐Muller, B., Godelle, B., & Gouyon, P.‐H. ( 1997 ). Evolution of coalescence times, genetic diversity and structure during colonization. Theoretical Population Biology, 51 ( 2 ), 148 – 164. https://doi.org/10.1006/tpbi.1997.1302
dc.identifier.citedreferenceBeaumont, M. A., Zhang, W., & Balding, D. J. ( 2002 ). Approximate Bayesian computation in population genetics. Genetics, 162 ( 4 ), 2025 – 2035.
dc.identifier.citedreferenceBemmels, J. B., Title, P. O., Ortego, J., & Knowles, L. L. ( 2016 ). Tests of species‐specific models reveal the importance of drought in postglacial range shifts of a Mediterranean‐climate tree: Insights from integrative distributional, demographic and coalescent modelling and ABC model selection. Molecular Ecology, 25 ( 19 ), 4889 – 4906. https://doi.org/10.1111/mec.13804
dc.identifier.citedreferenceBertorelle, G., & Barbujani, G. ( 1995 ). Analysis of DNA diversity by spatial autocorrelation. Genetics, 140 ( 2 ), 811 – 819.
dc.identifier.citedreferenceBoehm, J. T., Woodall, L., Teske, P. R., Lourie, S. A., Baldwin, C., Waldman, J., & Hickerson, M. ( 2013 ). Marine dispersal and barriers drive Atlantic seahorse diversification. Journal of Biogeography, 40 ( 10 ), 1839 – 1849. https://doi.org/10.1111/jbi.12127
dc.identifier.citedreferenceBradburd, G. S., Ralph, P. L., & Coop, G. M. ( 2016 ). A spatial framework for understanding population structure and admixture. PLOS Genetics, 12 ( 1 ), e1005703. https://doi.org/10.1371/journal.pgen.1005703
dc.identifier.citedreferenceBrown, J. L. ( 2014 ). SDMtoolbox: A python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5 ( 7 ), 694 – 700. https://doi.org/10.1111/2041-210X.12200
dc.identifier.citedreferenceBrown, J. L., & Knowles, L. L. ( 2012 ). Spatially explicit models of dynamic histories: Examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Molecular Ecology, 21 ( 15 ), 3757 – 3775. https://doi.org/10.1111/j.1365-294X.2012.05640.x
dc.identifier.citedreferenceCarnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., & Moritz, C. ( 2009 ). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323 ( 5915 ), 785 – 789. https://doi.org/10.1126/science.1166955
dc.identifier.citedreferenceCook, S. R., Gelman, A., & Rubin, D. B. ( 2006 ). Validation of software for Bayesian models using posterior quantiles. Journal of Computational and Graphical Statistics, 15 ( 3 ), 675 – 692. https://doi.org/10.1198/106186006X136976
dc.identifier.citedreferenceCoop, G., Witonsky, D., Rienzo, A. D., & Pritchard, J. K. ( 2010 ). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185 ( 4 ), 1411 – 1423. https://doi.org/10.1534/genetics.110.114819
dc.identifier.citedreferenceDeGiorgio, M., Jakobsson, M., & Rosenberg, N. A. ( 2009 ). Explaining worldwide patterns of human genetic variation using a coalescent‐based serial founder model of migration outward from Africa. Proceedings of the National Academy of Sciences, 106 ( 38 ), 16057 – 16062. https://doi.org/10.1073/pnas.0903341106
dc.identifier.citedreferenceExcoffier, L., & Lischer, H. E. L. ( 2010 ). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10 ( 3 ), 564 – 567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.identifier.citedreferenceFrançois, O., Currat, M., Ray, N., Han, E., Excoffier, L., & Novembre, J. ( 2010 ). Principal component analysis under population genetic models of range expansion and admixture. Molecular Biology and Evolution, 27 ( 6 ), 1257 – 1268. https://doi.org/10.1093/molbev/msq010
dc.identifier.citedreferenceGalbreath, K. E., Cook, J. A., Eddingsaas, A. A., & DeChaine, E. G. ( 2011 ). Diversity and demography in Beringia: Multilocus tests of paleodistribution models reveal the complex history of arctic ground squirrels. Evolution, 65 ( 7 ), 1879 – 1896. https://doi.org/10.1111/j.1558-5646.2011.01287.x
dc.identifier.citedreferenceGunderson, A. M., Jacobsen, B. K., & Olson, L. E. ( 2009 ). Revised distribution of the Alaska Marmot, Marmota broweri, and confirmation of parapatry with hoary marmots. Journal of Mammalogy, 90 ( 4 ), 859 – 869. https://doi.org/10.1644/08-MAMM-A-253.1
dc.identifier.citedreferenceHe, Q., Edwards, D. L., & Knowles, L. L. ( 2013 ). Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution, 67 ( 12 ), 3386 – 3402. https://doi.org/10.1111/evo.12159
dc.identifier.citedreferenceHewitt, G. ( 2000 ). The genetic legacy of the Quaternary ice ages. Nature, 405 ( 6789 ), 907. https://doi.org/10.1038/35016000
dc.identifier.citedreferenceHey, J. ( 2005 ). On the number of new world founders: A population genetic portrait of the peopling of the Americas. PLOS Biology, 3 ( 6 ), e193. https://doi.org/10.1371/journal.pbio.0030193
dc.identifier.citedreferenceItan, Y., Powell, A., Beaumont, M. A., Burger, J., & Thomas, M. G. ( 2009 ). The origins of lactase persistence in Europe. PLOS Computational Biology, 5 ( 8 ), e1000491. https://doi.org/10.1371/journal.pcbi.1000491
dc.identifier.citedreferenceKnowles, L. L. ( 2009 ). Statistical Phylogeography. Annual Review of Ecology, Evolution, and Systematics, 40 ( 1 ), 593 – 612. https://doi.org/10.1146/annurev.ecolsys.38.091206.095702.
dc.identifier.citedreferenceWegmann, D., Currat, M., & Excoffier, L. ( 2006 ). Molecular diversity after a range expansion in heterogeneous environments. Genetics, 174 ( 4 ), 2009 – 2020. https://doi.org/10.1534/genetics.106.062851
dc.identifier.citedreferenceKnowles, L. L., & Alvarado‐Serrano, D. F. ( 2010 ). Exploring the population genetic consequences of the colonization process with spatio‐temporally explicit models: Insights from coupled ecological, demographic and genetic models in montane grasshoppers. Molecular Ecology, 19 ( 17 ), 3727 – 3745. https://doi.org/10.1111/j.1365-294X.2010.04702.x
dc.identifier.citedreferenceKnowles, L. L., & Massatti, R. ( 2017 ). Distributional shifts – not geographic isolation – as a probable driver of montane species divergence. Ecography, https://doi.org/10.1111/ecog.02893
dc.identifier.citedreferenceKnowles, L. L., Massatti, R., He, Q., Olson, L. E., & Lanier, H. C. ( 2016 ). Quantifying the similarity between genes and geography across Alaska’s alpine small mammals. Journal of Biogeography, 43 ( 7 ), 1464 – 1476. https://doi.org/10.1111/jbi.12728
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.