Awa: Using water distribution systems to transmit data
dc.contributor.author | Joseph, Karun M. | |
dc.contributor.author | Watteyne, Thomas | |
dc.contributor.author | Kerkez, Branko | |
dc.date.accessioned | 2018-02-05T16:49:13Z | |
dc.date.available | 2019-03-01T21:00:18Z | en |
dc.date.issued | 2018-01 | |
dc.identifier.citation | Joseph, Karun M.; Watteyne, Thomas; Kerkez, Branko (2018). "Awa: Using water distribution systems to transmit data." Transactions on Emerging Telecommunications Technologies 29(1): n/a-n/a. | |
dc.identifier.issn | 2161-3915 | |
dc.identifier.issn | 2161-3915 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/142269 | |
dc.description.abstract | This article presents Awa, a real‐time wireless monitoring solution for urban water distribution systems (WDSs). The Awa system is composed of a distributed network of low‐cost sensor nodes that can be quickly installed on water pipes. Rather than using conventional radio signals, which are attenuated in underground environments, the nodes use the actual water‐filled pipe as the transmission medium to communicate with one another. This permits the use of an already existing water infrastructure in the deployment of large wireless sensor networks. We describe the development and evaluation of novel and battery‐powered sensor nodes that can be magnetically clipped to valves and hard‐to‐access points in WDSs without requiring digging or cutting of pipes. A channel characterization is carried out and a number of data modulation schemes are evaluated across a 110‐m section of pipe in an operational WDSs. We identify a near‐optimal frequency (near 500 Hz) for transmitting data. We demonstrate communication at 100 bps across a real‐world water pipe using amplitude modulation. Not unlike radio‐frequency wireless, we also measure the highly nonstationary effects of multipath fading. The article also contains an in‐depth discussion about the opportunities that this emerging communication technology offers in the context of city‐wide leak detection and flow monitoring. The paper describes a novel method by which to transmit data in underground water networks. Rather than using radio frequencies, the method uses the actual water‐filled pipe as the transmission channel. The transmission channel is analyzed in a real‐world water system, showing a very narrow low‐frequency band in which the approach can transmit data across hundreds of meters. | |
dc.publisher | ASCE | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.title | Awa: Using water distribution systems to transmit data | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142269/1/ett3219_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/142269/2/ett3219.pdf | |
dc.identifier.doi | 10.1002/ett.3219 | |
dc.identifier.source | Transactions on Emerging Telecommunications Technologies | |
dc.identifier.citedreference | Proakis JG, Manolakis DG. Digital Signal Processing. London, England: Pearson Prentice Hall; 2007. | |
dc.identifier.citedreference | Otnes R, Asterjadhi A, Casari P, et al. Underwater Acoustic Networking Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. | |
dc.identifier.citedreference | Hunaidi O, Chu W, Wang A, Guan W. Leak detection methods for plastic water distribution pipes. Institute for Research in Construction; 1999. | |
dc.identifier.citedreference | Jin Y, Ying Y, Zhao D. Time reversal data communications on pipes using guided elastic waves: Part II. Experimental studies. In: Kundu T, ed. SPIE Smart structures and materials and nondestructive evaluation and health monitoring. San Diego, California, USA: International Society for Optics and Photonics; March 2011: 188 ‐ 197. | |
dc.identifier.citedreference | Jin Y, Ying Y, Zhao D. Data communications using guided elastic waves by time reversal pulse position modulation: Experimental study. Sensors. 2013; 13 ( 7 ): 8352 ‐ 8376. | |
dc.identifier.citedreference | NFPA (NFPA). Fire code 1. NFPA, Technical Report Section 18.5.3; 2015. | |
dc.identifier.citedreference | Welch P. The Use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Modern Spectr Analysis; 1967; 15 ( 2 ): 70 ‐ 73. | |
dc.identifier.citedreference | Silk M, Bainton K. The propagation in metal tubing of ultrasonic wave modes equivalent to lamb waves. Ultrasonics. 1979; 17 ( 1 ): 11 ‐ 19. | |
dc.identifier.citedreference | Long R, Lowe M, Cawley P. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes. Ultrasonics. 2003; 41 ( 7 ): 509 ‐ 519. | |
dc.identifier.citedreference | Long R, Cawley P, Lowe M. Acoustic wave propagation in buried iron water pipes. Proc R Soc Lond A Math Phys Eng Sci. 2003; 459 ( 2039 ). | |
dc.identifier.citedreference | Stojanovic M, Catipovic J, Proakis J. Phase‐coherent digital communications for underwater acoustic channels. IEEE J Ocean Eng. 1994; 19 ( 1 ): 100 ‐ 111. | |
dc.identifier.citedreference | Yang J, Wen Y, Li P. Leak Location using blind system identification in water distribution pipelines. J Sound Vib. 2008; 310 ( 1‐2 ): 134 ‐ 148. | |
dc.identifier.citedreference | Long R, Lowe M, Cawley P. Axisymmetric modes that propagate in buried iron water pipes. Rev Quant Nondestruct Eval. 2003; 22: 1201 ‐ 1208. | |
dc.identifier.citedreference | Muggleton J, Brennan M, Linford P. Axisymmetric Wave propagation in fluid‐filled pipes: Wavenumber measurements in in vacuo and buried pipes. J Sound Vib. 2004; 270 ( 1‐2 ): 171 ‐ 190. | |
dc.identifier.citedreference | Stojanovic M. On the Relationship Between Capacity and Distance in an Underwater Acoustic Communication channel. International Workshop on Underwater Networks (WUWNet). Los Angeles, CA, USA: ACM; September 2006: 41 ‐ 47. | |
dc.identifier.citedreference | Zeng WJ, Jiang X. Time reversal communication over doubly spread channels. The J Acoust Soc Amer. 2012; 132 ( 5 ): 3200 ‐ 3212. | |
dc.identifier.citedreference | Watteyne T, Vilajosana X, Kerkez B, et al. Open WSN: A standards‐based low‐power wireless development environment. Trans Emerg Telecommun Technol. 2012; 23 ( 5 ): 480 ‐ 493. | |
dc.identifier.citedreference | Alkasseh JMA, Adlan MN, Abustan I, Aziz HA, Hanif ABM. Applying minimum night flow to estimate water loss using statistical modeling: A case study in Kinta Valley, Malaysia. Water Resour Manag. 2013; 27 ( 5 ): 1439 ‐ 1455. | |
dc.identifier.citedreference | AWWA. Water Audits and Loss Control Programs, 3rd Ed. (m36), American Water Works Association. Technical Report; 2011. | |
dc.identifier.citedreference | James K, Campbell SL, Godlobe CE. Watergy: Taking Advantage of Untapped Energy and Water Efficiency Opportunities in Municipal Water Systems, Alliance to Save Energy. Technical Report; 2002. | |
dc.identifier.citedreference | Krause A, Leskovec J, Guestrin C, VanBriesen J, Faloutsos C. Efficient sensor placement optimization for securing large water distribution networks. J Water Resour Plann Manag. 2008; 134 ( 6 ): 516 ‐ 526. | |
dc.identifier.citedreference | LeChevallier MW, Gullick RW, Karim MR, Friedman M, Funk JE. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients. J Hater Health. 2003; 1 ( 1 ): 3 ‐ 14. | |
dc.identifier.citedreference | Hanna‐Attisha M, LaChance J, Sadler RC, Champney Schnepp A. Elevated blood lead levels in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response. Amer J Public Health. 2016; 106 ( 2 ): 283 ‐ 290. | |
dc.identifier.citedreference | Yang J, Haught RC, Goodrich JA. Real‐time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: Techniques and experimental results. J Environ Manag. 2009; 90 ( 8 ): 2494 ‐ 2506. | |
dc.identifier.citedreference | Fuchs H, Riehle R. Ten years of experience with leak detection by acoustic signal analysis. Appl Acoust. 1991; 33 ( 1 ): 1 ‐ 19. | |
dc.identifier.citedreference | Lowe M, Alleyne D, Cawley P. Defect detection in pipes using guided waves. Ultrasonics. 1998; 36 ( 1 ): 147 ‐ 154. | |
dc.identifier.citedreference | Rose JL. A baseline and vision of ultrasonic guided wave inspection potential. J Press Vessel Technol. 2002; 124 ( 3 ): 273 ‐ 282. | |
dc.identifier.citedreference | Kumar J, Sreepathi S, Brill ED, Ranjithan R, Mahinthakumar G. Detection of leaks in water distribution system using routine water quality measurements. Paper presented at: World Environmental and Water Resources Congress. ASCE; 2010; Providence, Rhode Island, USA. | |
dc.identifier.citedreference | Shen X, Wang Z, Sun Y. Wireless Sensor networks for industrial applications. Paper presented at: Fifth World Congress on Intelligent Control and Automation, Vol. 4. IEEE; 2004; Hangzhou, China, China. | |
dc.identifier.citedreference | Hart D, McKenna SA, Klise K, Cruz V, Wilson M. CANARY: A water quality event detection algorithm development tool. Paper presented at: World Environmental and Water Resources Congress. ASCE; 2007; Tampa, Florida, USA. | |
dc.identifier.citedreference | IEEE. IEEE Standard For Information Technology Telecommunications and information exchange between systems Local and metropolitan area networks. IEEE 802 LAN/MAN Standards Committee; 2010. | |
dc.identifier.citedreference | IEEE. IEEE Standard For Local and Metropolitan area networks Part 15.4: Low‐rate Wireless Personal Area Networks (WPANs), Amendment: Active radio. IEEE 802 LAN/MAN Standards Committee; 2015. | |
dc.identifier.citedreference | Stoianov I, Nachman L, Madden S, Tokmouline T. PIPENET: A wireless sensor network for pipeline monitoring. Paper presented at: International Symposium on Information Processing in Sensor Networks (IPSN) IEEE; April 2007. | |
dc.identifier.citedreference | Whittle AJ, Girod L, Preis A, et al. WaterWiSe@SG: A testbed for continuous monitoring of the water distribution system in Singapore. Water Distrib Syst Anal ASCE. 2010: 1362 ‐ 1378. | |
dc.identifier.citedreference | Karl H, Willig A. Protocols and Architectures for Wireless Sensor Networks. West Sussex, England: Wiley; 2007. | |
dc.identifier.citedreference | Van Dam RL, Borchers B, Hendrickx JMH. Methods for prediction of soil dielectric properties: A review. In: Harmon RS, Broach JT, Holloway JH, eds. Detection and remediation technologies for mines and minelike targets. Orlando, Florida, USA: International Society for Optics and Photonics; June 2005: 188 ‐ 197. | |
dc.identifier.citedreference | Akyildiz IF, Stuntebeck EP. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006; 4 ( 6 ): 669 ‐ 686. | |
dc.identifier.citedreference | Stojanovic M, Preisig J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun Mag. 2009; 47 ( 1 ): 84 ‐ 89. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.