Show simple item record

The rocky road to personalized medicine in acute myeloid leukaemia

dc.contributor.authorBrinda, Bryan
dc.contributor.authorKhan, Irum
dc.contributor.authorParkin, Brian
dc.contributor.authorKonig, Heiko
dc.date.accessioned2018-03-07T18:25:13Z
dc.date.available2019-05-13T14:45:24Zen
dc.date.issued2018-03
dc.identifier.citationBrinda, Bryan; Khan, Irum; Parkin, Brian; Konig, Heiko (2018). "The rocky road to personalized medicine in acute myeloid leukaemia." Journal of Cellular and Molecular Medicine 22(3): 1411-1427.
dc.identifier.issn1582-1838
dc.identifier.issn1582-4934
dc.identifier.urihttps://hdl.handle.net/2027.42/142504
dc.description.abstractAcute myeloid leukaemia (AML) is a malignant disorder of the myeloid blood lineage characterized by impaired differentiation and increased proliferation of hematopoietic precursor cells. Recent technological advances have led to an improved understanding of AML biology but also uncovered the enormous cytogenetic and molecular heterogeneity of the disease. Despite this heterogeneity, AML is mostly managed by a ‘one‐size‐fits‐all’ approach consisting of intensive, highly toxic induction and consolidation chemotherapy. These treatment protocols have remained largely unchanged for the past several decades and only lead to a cure in approximately 30–35% of cases. The advent of targeted therapies in chronic myeloid leukaemia and other malignancies has sparked hope to improve patient outcome in AML. However, the implementation of targeted agents in AML therapy has been unexpectedly cumbersome and remains a difficult task due to a variety of disease‐ and patient‐specific factors. In this review, we describe current standard and investigational therapeutic strategies with a focus on targeted agents and highlight potential tools that might facilitate the development of targeted therapies for this fatal disease. The classes of agents described in this review include constitutively activated signalling pathway inhibitors, surface receptor targets, epigenetic modifiers, drugs targeting the interaction of the hematopoietic progenitor cell with the stroma and drugs that target the apoptotic machinery. The clinical context and outcome with these agents will be examined to gain insight about their optimal utilization.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheracute myeloid leukaemia
dc.subject.othertargeted therapies
dc.subject.otherdrug resistance
dc.subject.otherminimal residual disease
dc.titleThe rocky road to personalized medicine in acute myeloid leukaemia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142504/1/jcmm13478.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142504/2/jcmm13478_am.pdf
dc.identifier.doi10.1111/jcmm.13478
dc.identifier.sourceJournal of Cellular and Molecular Medicine
dc.identifier.citedreferenceLi S, Garrett‐Bakelman FE, Chung SS, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016; 22: 792 – 9.
dc.identifier.citedreferenceCloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006; 20: 1217 – 20.
dc.identifier.citedreferenceShlush LI, Zandi S, Mitchell A, et al. Identification of pre‐leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506: 328 – 33.
dc.identifier.citedreferenceHo TC, LaMere M, Stevens BM, et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood. 2016; 128: 1671 – 8.
dc.identifier.citedreferenceSarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac‐deficient mice. J Clin Invest. 2011; 121: 384 – 95.
dc.identifier.citedreferenceSanchez PV, Perry RL, Sarry JE, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia. 2009; 23: 2109 – 17.
dc.identifier.citedreferenceWunderlich M, Chou FS, Link KA, et al. AML xenograft efficiency is significantly improved in NOD/SCID‐IL2RG mice constitutively expressing human SCF, GM‐CSF and IL‐3. Leukemia. 2010; 24: 1785 – 8.
dc.identifier.citedreferenceKlco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014; 25: 379 – 92.
dc.identifier.citedreferenceJourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013; 121: 2213 – 23.
dc.identifier.citedreferenceIvey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard‐risk AML. N Engl J Med. 2016; 374: 422 – 33.
dc.identifier.citedreferenceShayegi N, Kramer M, Bornhauser M, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013; 122: 83 – 92.
dc.identifier.citedreferenceCorbacioglu A, Scholl C, Schlenk RF, et al. Prognostic impact of minimal residual disease in CBFB‐MYH11‐positive acute myeloid leukemia. J Clin Oncol. 2010; 28: 3724 – 9.
dc.identifier.citedreferenceKlco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015; 314: 811 – 22.
dc.identifier.citedreferenceDebarri H, Lebon D, Roumier C, et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget. 2015; 6: 42345 – 53.
dc.identifier.citedreferenceKonig H, Santos CD. Signal transduction in acute myeloid leukemia – implications for novel therapeutic concepts. Curr Cancer Drug Targets. 2015; 15: 803 – 21.
dc.identifier.citedreferenceMamdani H, Santos CD, Konig H. Treatment of acute myeloid leukemia in elderly patients – a therapeutic dilemma. J Am Med Dir Assoc. 2016; 17: 581 – 7.
dc.identifier.citedreferenceTrunzer K, Pavlick AC, Schuchter L, et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol. 2013; 31: 1767 – 74.
dc.identifier.citedreferenceStewart EL, Tan SZ, Liu G, et al. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations‐a review. Transl Lung Cancer Res. 2015; 4: 67 – 81.
dc.identifier.citedreferenceRexer BN, Arteaga CL. Intrinsic and acquired resistance to HER2‐targeted therapies in HER2 gene‐amplified breast cancer: mechanisms and clinical implications. Crit Rev Oncog. 2012; 17: 1 – 16.
dc.identifier.citedreferenceLokody I. Drug resistance: overcoming resistance in acute myeloid leukaemia treatment. Nat Rev Cancer. 2014; 14: 452 – 3.
dc.identifier.citedreferenceRaetz E, Kovacsovics T. Personalizing therapy: the beat AML trial. The Hematologist. 2017; 14: 1 – 2.
dc.identifier.citedreferenceLevis M. Midostaurin approved for FLT3‐mutated AML. Blood. 2017; 129: 3403 – 6.
dc.identifier.citedreferenceHochhaus A, Larson RA, Guilhot F, et al. Long‐term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017; 376: 917 – 27.
dc.identifier.citedreferenceBatlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016; 13: 25 – 40.
dc.identifier.citedreferenceEstey E. Why is progress in acute myeloid leukemia so slow? Semin Hematol. 2015; 52: 243 – 8.
dc.identifier.citedreferenceKantarjian H, O’Brien S. Questions regarding frontline therapy of acute myeloid leukemia. Cancer. 2010; 116: 4896 – 901.
dc.identifier.citedreferenceFernandez HF, Sun Z, Yao X, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009; 361: 1249 – 59.
dc.identifier.citedreferenceLowenberg B, Ossenkoppele GJ, van Putten W, et al. High‐dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009; 361: 1235 – 48.
dc.identifier.citedreferenceBurnett AK, Russell NH, Hills RK, et al. A randomized comparison of daunorubicin 90 mg/m 2 vs 60 mg/m 2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015; 125: 3878 – 85.
dc.identifier.citedreferenceJuliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009; 113: 4179 – 87.
dc.identifier.citedreferenceHiddemann W, Kern W, Schoch C, et al. Management of acute myeloid leukemia in elderly patients. J Clin Oncol. 1999; 17: 3569 – 76.
dc.identifier.citedreferenceLancet JE, Uy GL, Cortes JE, et al. Final results of a phase III randomized trial of CPX‐351 versus 7 + 3 in older patients with newly diagnosed high risk (secondary) AML. ASCO Annual Meeting. 2016;Abstract 7000.
dc.identifier.citedreferenceBross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001; 7: 1490 – 6.
dc.identifier.citedreferencePetersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013; 121: 4854 – 60.
dc.identifier.citedreferenceBurnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011; 29: 369 – 77.
dc.identifier.citedreferenceCastaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de‐novo acute myeloid leukaemia (ALFA‐0701): a randomised, open‐label, phase 3 study. Lancet. 2012; 379: 1508 – 16.
dc.identifier.citedreferenceBurnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012; 30: 3924 – 31.
dc.identifier.citedreferenceDelaunay J, Recher C, Pigneux A, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event‐free survival but not overall survival of AML patients with intermediate cytogenetics not eligible for allogeneic transplantation. Results of the GOELAMS AML 2006 IR study. Blood. 2011; 118: 79.
dc.identifier.citedreferenceHills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta‐analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014; 15: 986 – 96.
dc.identifier.citedreferenceNand S, Othus M, Godwin JE, et al. A phase 2 trial of azacitidine and gemtuzumab ozogamicin therapy in older patients with acute myeloid leukemia. Blood. 2013; 122: 3432 – 9.
dc.identifier.citedreferenceDaver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high‐risk myelodysplastic syndrome. Leukemia. 2016; 30: 268 – 73.
dc.identifier.citedreferenceBurnett AK, Hills RK, Hunter AE, et al. The addition of gemtuzumab ozogamicin to low‐dose Ara‐C improves remission rate but does not significantly prolong survival in older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI AML16 pick‐a‐winner comparison. Leukemia. 2013; 27: 75 – 81.
dc.identifier.citedreferenceFathi AT, Erba HP, Lancet JE, et al. Vadastuximab talirine plus hypomethylating agents: a well‐tolerated regimen with high remission rate in frontline older patients with acute myeloid leukemia (AML). Blood. 2016; 128: 591.
dc.identifier.citedreferenceErba HP, Levy MY, Vasu S, et al. A phase 1b study of vadastuximab talirine in combination with 7 + 3 induction therapy for patients with newly diagnosed acute myeloid leukemia (AML). Blood. 2016; 128: 211.
dc.identifier.citedreferenceManara E, Bisio V, Masetti R, et al. Core‐binding factor acute myeloid leukemia in pediatric patients enrolled in the AIEOP AML 2002/01 trial: screening and prognostic impact of c‐KIT mutations. Leukemia. 2014; 28: 1132 – 4.
dc.identifier.citedreferenceChen W, Xie H, Wang H, et al. Prognostic significance of KIT mutations in core‐binding factor acute myeloid leukemia: a systematic review and meta‐analysis. PLoS ONE. 2016; 11: 1 – 19.
dc.identifier.citedreferenceMarcucci G, Geyer S, Zhao W, et al. Adding KIT inhibitor dasatinib (DAS) to chemotherapy overcomes the negative impact of KIT mutation/over‐expression in core binding factor (CBF) acute myeloid leukemia (AML): results from CALGB 10801 (Alliance). Blood. 2014; 124: 8.
dc.identifier.citedreferenceBoissel N, Renneville A, Leguay T, et al. Dasatinib in high‐risk core binding factor acute myeloid leukemia in first complete remission: a French Acute Myeloid Leukemia Intergroup trial. Haematologica. 2015; 100: 780 – 5.
dc.identifier.citedreferencePratz KW, Sato T, Murphy KM, et al. FLT3‐mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010; 115: 1425 – 32.
dc.identifier.citedreferenceDing L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole‐genome sequencing. Nature. 2012; 481: 506 – 10.
dc.identifier.citedreferencePratz KW, Levis M. How I treat FLT3‐mutated AML. Blood. 2017; 129: 565 – 71.
dc.identifier.citedreferenceFischer T, Stone RM, Deangelo DJ, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS‐like tyrosine kinase 3 receptor (FLT3) and multi‐targeted kinase inhibitor, in patients with acute myeloid leukemia and high‐risk myelodysplastic syndrome with either wild‐type or mutated FLT3. J Clin Oncol. 2010; 28: 4339 – 45.
dc.identifier.citedreferenceStone RM, Fischer T, Paquette R, et al. Phase IB study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia. 2012; 26: 2061 – 8.
dc.identifier.citedreferenceStone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017; 377: 454 – 64.
dc.identifier.citedreferenceRavandi F, Cortes JE, Jones D, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010; 28: 1856 – 62.
dc.identifier.citedreferenceRollig C, Serve H, Huttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015; 16: 1691 – 9.
dc.identifier.citedreferenceServe H, Krug U, Wagner R, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo‐controlled trial. J Clin Oncol. 2013; 31: 3110 – 8.
dc.identifier.citedreferenceRavandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT‐3 internal tandem duplication mutation. Blood. 2013; 121: 4655 – 62.
dc.identifier.citedreferenceBrunner AM, Li S, Fathi AT, et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3‐ITD acute myeloid leukaemia in first complete remission. Br J Haematol. 2016; 175: 496 – 504.
dc.identifier.citedreferenceWander SA, Levis MJ, Fathi AT. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol. 2014; 5: 65 – 77.
dc.identifier.citedreferenceCortes JE, Kantarjian H, Foran JM, et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS‐like tyrosine kinase 3‐internal tandem duplication status. J Clin Oncol. 2013; 31: 3681 – 7.
dc.identifier.citedreferenceLevis MJ, Perl AE, Dombret H, et al. Final results of a phase 2 open‐label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3‐ITD positive or negative relapsed/refractory acute myeloid leukemia after second‐line chemotherapy or hematopoietic stem cell transplantation. Blood. 2012; 120: 673.
dc.identifier.citedreferenceSchiller GJ, Tallman MS, Goldberg SL, et al. Final results of a randomized phase 2 study showing the clinical benefit of quizartinib (AC220) in patients with FLT3‐ITD positive relapsed or refractory acute myeloid leukemia. J Clin Oncol. 2014; 32: 7100.
dc.identifier.citedreferenceLevis MJ, Perl AE, Altman JK, et al. Results of a first‐in‐human, phase I/II trial of ASP2215, a selective, potent inhibitor of FLT3/Axl in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). J Clin Oncol. 2015; 33: 7003.
dc.identifier.citedreferenceAltman JK, Perl AE, Cortes JE, et al. Antileukemic activity and tolerability of ASP2215 80 mg and greater in FLT3 mutation‐positive subjects with relapsed or refractory acute myeloid leukemia: results from a phase 1/2, open‐label, dose‐escalation/dose‐response study. Blood. 2015; 126: 321.
dc.identifier.citedreferenceAltman JK, Perl AE, Cortes JE, et al. Deep molecular response to gilteritinib to improve survival in FLT3 mutation‐positive relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2017; 35: 7003.
dc.identifier.citedreferenceJain N, Curran E, Iyengar NM, et al. Phase II study of the oral MEK inhibitor selumetinib in advanced acute myelogenous leukemia: a University of Chicago Phase II Consortium Trial. Clin Cancer Res. 2014; 20: 490 – 8.
dc.identifier.citedreferenceBorthakur G, Popplewell L, Boyiadzis M, et al. Activity of the oral mitogen‐activated protein kinase kinase inhibitor trametinib in RAS‐mutant relapsed or refractory myeloid malignancies. Cancer. 2016; 122: 1871 – 9.
dc.identifier.citedreferenceAthuluri‐Divakar SK, Vasquez‐Del Carpio R, Dutta K, et al. A small molecule RAS‐mimetic disrupts RAS association with effector proteins to block signaling. Cell. 2016; 165: 643 – 55.
dc.identifier.citedreferenceErba HP, Becker PS, Shami PJ, et al. Dose escalation results of a phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in patients (Pts) with relapsed/refractory (r/r) acute myeloid leukemia (AML). J Clin Oncol. 2017; 35: 7027.
dc.identifier.citedreferenceStrebhardt K. Multifaceted polo‐like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discovery. 2010; 9: 643 – 60.
dc.identifier.citedreferenceDöhner H, Lübbert M, Fiedler W, et al. Randomized, phase 2 trial of low‐dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014; 124: 1426 – 33.
dc.identifier.citedreferenceDohner H, Symeonidis A, Sanz MA, et al. Phase III randomized trial of volasertib plus low‐dose cytarabine (LDAC) versus placebo plus LDAC in patients aged >65 years with previously untreated AML, ineligible for intensive therapy. Haematologica. 2016; 101 (suppl.1): 185 – 186.
dc.identifier.citedreferenceSedlacek HH. Mechanisms of action of flavopiridol. Crit Rev Oncol Hematol. 2001; 38: 139 – 70.
dc.identifier.citedreferenceKarp JE, Ross DD, Yang W, et al. Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin Cancer Res. 2003; 9: 307 – 15.
dc.identifier.citedreferenceKarp JE, Smith BD, Levis MJ, et al. Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor‐risk acute myelogenous leukemia. Clin Cancer Res. 2007; 13: 4467 – 73.
dc.identifier.citedreferenceKarp JE, Passaniti A, Gojo I, et al. Phase I and pharmacokinetic study of flavopiridol followed by 1‐beta‐D‐arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clin Cancer Res. 2005; 11: 8403 – 12.
dc.identifier.citedreferenceKarp JE, Blackford A, Smith BD, et al. Clinical activity of sequential flavopiridol, cytosine arabinoside, and mitoxantrone for adults with newly diagnosed, poor‐risk acute myelogenous leukemia. Leuk Res. 2010; 34: 877 – 82.
dc.identifier.citedreferenceKarp JE, Smith BD, Resar LS, et al. Phase 1 and pharmacokinetic study of bolus‐infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood. 2011; 117: 3302 – 10.
dc.identifier.citedreferenceDawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL‐fusion leukaemia. Nature. 2011; 478: 529 – 33.
dc.identifier.citedreferenceKarp JE, Garrett‐Mayer E, Estey EH, et al. Randomized phase II study of two schedules of flavopiridol given as timed sequential therapy with cytosine arabinoside and mitoxantrone for adults with newly diagnosed, poor‐risk acute myelogenous leukemia. Haematologica. 2012; 97: 1736 – 42.
dc.identifier.citedreferenceZeidner JF, Foster MC, Blackford AL, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7 + 3) in newly diagnosed acute myeloid leukemia. Haematologica. 2015; 100: 1172 – 9.
dc.identifier.citedreferenceLitzow MR, Wang XV, Carroll MP, et al. A randomized phase II trial of three novel regimens for relapsed/refractory acute myeloid leukemia (AML) demonstrates encouraging results with a flavopiridol‐based regimen: results of Eastern Cooperative Oncology Group (ECOG) Trial E1906. Blood. 2014; 124: 3742.
dc.identifier.citedreferenceFrohling S, Agrawal M, Jahn N, et al. CDK4/6 inhibitor palbociclib for treatment of KMT2A‐rearranged acute myeloid leukemia: interim analysis of the AMLSG 23‐14 trial. Blood. 2016; 128: 1608.
dc.identifier.citedreferenceKonopleva M, Pollyea DA, Potluri J, et al. A phase 2 study of ABT‐199 (GDC‐0199) in patients with acute myelogenous leukemia (AML). Blood. 2014; 124: 118.
dc.identifier.citedreferenceChan SM, Thomas D, Corces‐Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL‐2 dependence in acute myeloid leukemia. Nat Med. 2015; 21: 178 – 84.
dc.identifier.citedreferencePollyea DA, Dinardo CD, Thirman MJ, et al. Results of a phase 1b study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients ≥ 65 years ineligible for standard induction therapy. J Clin Oncol. 2016; 34: 7009.
dc.identifier.citedreferenceWei A, Strickland SA, Roboz GJ, et al. Safety and efficacy of venetoclax plus low‐dose cytarabine in treatment‐naive patients aged ≥65 years with acute myeloid leukemia. Blood. 2016; 128: 102.
dc.identifier.citedreferenceUy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012; 119: 3917 – 24.
dc.identifier.citedreferenceBecker PS, Foran JM, Altman JK, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of ulocuplumab (BMS‐936564), an Anti‐CXCR4 antibody, in relapsed/refractory acute myeloid leukemia. Blood. 2014; 124: 386.
dc.identifier.citedreferenceRodriguez‐Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17 (3): 330 – 339.
dc.identifier.citedreferenceFenaux P, Mufti GJ, Hellström‐Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010; 28: 562 – 9.
dc.identifier.citedreferenceKantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open‐label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low‐dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012; 30: 2670 – 7.
dc.identifier.citedreferenceStein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016; 127: 71 – 8.
dc.identifier.citedreferenceFigueroa ME, Abdel‐Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010; 18: 553 – 67.
dc.identifier.citedreferenceStein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant‐IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017; 130: 722 – 31.
dc.identifier.citedreferenceBirendra KC, DiNardo CD. Evidence for clinical differentiation and differentiation syndrome in patients with acute myeloid leukemia and IDH1 mutations treated with the targeted mutant IDH1 inhibitor, AG‐120. Clin Lymphoma Myeloma Leuk. 2016; 16: 460 – 5.
dc.identifier.citedreferenceRoboz GJ, Rosenblat T, Arellano M, et al. International randomized phase III study of elacytarabine versus investigator choice in patients with relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2014; 32: 1919 – 26.
dc.identifier.citedreferenceOdenike OM, Alkan S, Sher D, et al. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res. 2008; 14: 7095 – 101.
dc.identifier.citedreferenceGarcia‐Manero G, Othus M, Pagel JM, et al. SWOG S1203: a randomized phase III study of standard cytarabine plus daunorubicin (7 + 3) therapy versus idarubicin with high dose cytarabine (IA) with or without vorinostat (IA+V) in younger patients with previously untreated acute myeloid leukemia (AML). Blood. 2016; 128: 901.
dc.identifier.citedreferenceMims AS, Klisovic RB, Garzon R, et al. A novel regimen for acute myeloid leukemia with MLL partial tandem duplication: results of a phase 1 study NCI 8485. Blood. 2016; 128: 900.
dc.identifier.citedreferencePrebet T, Sun Z, Figueroa ME, et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia‐related changes: results of the US Leukemia Intergroup trial E1905. J Clin Oncol. 2014; 32: 1242 – 8.
dc.identifier.citedreferenceStein EM, Garcia‐Manero G, Rizzieri DA, et al. A phase 1 study of the DOT1L inhibitor, pinometostat (EPZ‐5676), in adults with relapsed or refractory leukemia: safety, clinical activity. Exposure and target inhibition. Blood. 2015; 126: 2547.
dc.identifier.citedreferenceFilippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010; 468: 1067 – 73.
dc.identifier.citedreferenceFiskus W, Sharma S, Qi J, et al. BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3‐TKI in AML cells expressing FLT‐ITD. Mol Cancer Ther. 2014; 13: 2315 – 27.
dc.identifier.citedreferenceCancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368: 2059 – 74.
dc.identifier.citedreferencePaguirigan AL, Smith J, Meshinchi S, et al. Single‐cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med. 2015; 7: 281re2.
dc.identifier.citedreferenceParkin B, Ouillette P, Li Y, et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood. 2013; 121: 369 – 77.
dc.identifier.citedreferenceBachas C, Schuurhuis GJ, Assaraf YG, et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia. 2012; 26: 1313 – 20.
dc.identifier.citedreferenceJan M, Snyder TM, Corces‐Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012; 4: 149ra18.
dc.identifier.citedreferenceCorces‐Zimmerman MR, Hong WJ, Weissman IL, et al. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014; 111: 2548 – 53.
dc.identifier.citedreferenceChou WC, Lei WC, Ko BS, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011; 25: 246 – 53.
dc.identifier.citedreferenceHou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012; 119: 559 – 68.
dc.identifier.citedreferenceBacher U, Haferlach T, Schoch C, et al. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006; 107: 3847 – 53.
dc.identifier.citedreferenceKottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002; 100: 2393 – 8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.