Show simple item record

Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease

dc.contributor.authorBrady, Graham F.
dc.contributor.authorKwan, Raymond
dc.contributor.authorUlintz, Peter J.
dc.contributor.authorNguyen, Phirum
dc.contributor.authorBassirian, Shirin
dc.contributor.authorBasrur, Venkatesha
dc.contributor.authorNesvizhskii, Alexey I.
dc.contributor.authorLoomba, Rohit
dc.contributor.authorOmary, M. Bishr
dc.date.accessioned2018-05-15T20:15:14Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationBrady, Graham F.; Kwan, Raymond; Ulintz, Peter J.; Nguyen, Phirum; Bassirian, Shirin; Basrur, Venkatesha; Nesvizhskii, Alexey I.; Loomba, Rohit; Omary, M. Bishr (2018). "Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease." Hepatology 67(5): 1710-1725.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/143740
dc.publisherWiley Periodicals, Inc.
dc.titleNuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143740/1/hep29522.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143740/2/hep29522-sup-0001-suppinfo1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143740/3/hep29522_am.pdf
dc.identifier.doi10.1002/hep.29522
dc.identifier.sourceHepatology
dc.identifier.citedreferencePekovic V, Gibbs‐Seymour I, Markiewicz E, Alzoghaibi F, Benham AM, Edwards R, et al. Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 2011; 10: 1067 ‐ 1079.
dc.identifier.citedreferenceSpeliotes EK, Butler JL, Palmer CD, Voight BF, GIANT Consortium, MIGen Consortium, et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010; 52: 904 ‐ 912.
dc.identifier.citedreferenceDechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. Lamina‐associated polypeptide 2alpha binds intranuclear A‐type lamins. J Cell Sci 2000; 113: 3473 ‐ 3484.
dc.identifier.citedreferenceNaetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, et al. Loss of nucleoplasmic LAP2alpha‐lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008; 10: 1341 ‐ 1348.
dc.identifier.citedreferenceGesson K, Vidak S, Foisner R. Lamina‐associated polypeptide (LAP) 2alpha and nucleoplasmic lamins in adult stem cell regulation and disease. Semin Cell Dev Biol 2014; 29: 116 ‐ 124.
dc.identifier.citedreferenceTaylor MR, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, et al. Thymopoietin (lamina‐associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2005; 26: 566 ‐ 574.
dc.identifier.citedreferenceBradley CM, Jones S, Huang Y, Suzuki Y, Kvaratskhelia M, Hickman AB, et al. Structural basis for dimerization of LAP2alpha, a component of the nuclear lamina. Structure 2007; 15: 643 ‐ 653.
dc.identifier.citedreferenceSnyers L, Vlcek S, Dechat T, Skegro D, Korbei B, Gajewski A, et al. Lamina‐associated polypeptide 2‐alpha forms homo‐trimers via its C terminus, and oligomerization is unaffected by a disease‐causing mutation. J Biol Chem 2007; 282: 6308 ‐ 6315.
dc.identifier.citedreferenceVlcek S, Just H, Dechat T, Foisner R. Functional diversity of LAP2alpha and LAP2beta in postmitotic chromosome association is caused by an alpha‐specific nuclear targeting domain. EMBO J 1999; 18: 6370 ‐ 6384.
dc.identifier.citedreferencePopineau L, Morzyglod L, Carre N, Cauzac M, Bossard P, Prip‐Buus C, et al. Novel Grb14‐mediated cross talk between insulin and p62/Nrf2 pathways regulates liver lipogenesis and selective insulin resistance. Mol Cell Biol 2016; 36: 2168 ‐ 2181.
dc.identifier.citedreferenceSpeliotes EK, Yerges‐Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome‐wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011; 7: e1001324.
dc.identifier.citedreferenceKwan R, Brady GF, Brzozowski M, Weerasinghe SV, Martin H, Park M‐J, et al. Hepatocyte‐specific deletion of mouse lamin A/C leads to male‐selective steatohepatitis. Cell Mol Gastroenterol Hepatol 2017; 4: 365 ‐ 383.
dc.identifier.citedreferenceGalant D, Gaborit B, Desgrouas C, Abdesselam I, Bernard M, Levy N, et al. A heterozygous ZMPSTE24 mutation associated with severe metabolic syndrome, ectopic fat accumulation, and dilated cardiomyopathy. Cells 2016; 5: 21. doi: 10.3390/cells5020021.
dc.identifier.citedreferenceYang SH, Jung HJ, Coffinier C, Fong LG, Young SG. Are B‐type lamins essential in all mammalian cells? Nucleus 2011; 2: 562 ‐ 569.
dc.identifier.citedreferenceGao J, Li Y, Fu X, Luo X. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J Pediatr Endocrinol Metab 2012; 25: 375 ‐ 377.
dc.identifier.citedreferenceZatloukal K, Denk H, Spurej G, Hutter H. Modulation of protein composition of nuclear lamina. Reduction of lamins B1 and B2 in livers of griseofulvin‐treated mice. Lab Invest 1992; 66: 589 ‐ 597.
dc.identifier.citedreferenceSingla A, Griggs NW, Kwan R, Snider NT, Maitra D, Ernst SA, et al. Lamin aggregation is an early sensor of porphyria‐induced liver injury. J Cell Sci 2013; 126: 3105 ‐ 3112.
dc.identifier.citedreferenceReeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 2010; 18: 337 ‐ 357.
dc.identifier.citedreferenceZaragoza MV, Fung L, Jensen E, Oh F, Cung K, McCarthy LA, et al. Exome sequencing identifies a novel LMNA splice‐site mutation and multigenic heterozygosity of potential modifiers in a family with sick sinus syndrome, dilated cardiomyopathy, and sudden cardiac death. PLoS One 2016; 11: e0155421.
dc.identifier.citedreferenceMuchir A, Worman HJ. Targeting mitogen‐activated protein kinase signaling in mouse models of cardiomyopathy caused by lamin A/C gene mutations. Methods Enzymol 2016; 568: 557 ‐ 580.
dc.identifier.citedreferenceBarton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM‐domain proteins. Curr Opin Cell Biol 2015; 34: 1 ‐ 8.
dc.identifier.citedreferenceVidak S, Kubben N, Dechat T, Foisner R. Proliferation of progeria cells is enhanced by lamina‐associated polypeptide 2alpha (LAP2alpha) through expression of extracellular matrix proteins. Genes Dev 2015; 29: 2022 ‐ 2036.
dc.identifier.citedreferenceChalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non‐alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012; 55: 2005 ‐ 2023.
dc.identifier.citedreferenceMichelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10: 656 ‐ 665.
dc.identifier.citedreferenceSattar N, Forrest E, Preiss D. Non‐alcoholic fatty liver disease. BMJ 2014; 349: g4596.
dc.identifier.citedreferenceMarengo A, Jouness RI, Bugianesi E. Progression and natural history of nonalcoholic fatty liver disease in adults. Clin Liver Dis 2016; 20: 313 ‐ 324.
dc.identifier.citedreferenceWong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148: 547 ‐ 555.
dc.identifier.citedreferenceSanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675 ‐ 1685.
dc.identifier.citedreferenceLoomba R, Schork N, Chen CH, Bettencourt R, Bhatt A, Ang B, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 2015; 149: 1784 ‐ 1793.
dc.identifier.citedreferenceAnstee QM, Seth D, Day CP. Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology 2016; 150: 1728 ‐ 1744.
dc.identifier.citedreferenceZarrinpar A, Gupta S, Maurya MR, Subramaniam S, Loomba R. Serum microRNAs explain discordance of non‐alcoholic fatty liver disease in monozygotic and dizygotic twins: a prospective study. Gut 2016; 65: 1546 ‐ 1554.
dc.identifier.citedreferenceGrove JI, Austin M, Tibble J, Aithal GP, Verma S. Monozygotic twins with NASH cirrhosis: cumulative effect of multiple single nucleotide polymorphisms? Ann Hepatol 2016; 15: 277 ‐ 282.
dc.identifier.citedreferenceCui J, Chen CH, Lo MT, Schork N, Bettencourt R, Gonzalez MP, et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology 2016; 64: 1547 ‐ 1558.
dc.identifier.citedreferenceOmary MB. “ IF‐pathies”: a broad spectrum of intermediate filament–associated diseases. J Clin Invest 2009; 119: 1756 ‐ 1762.
dc.identifier.citedreferenceButin‐Israeli V, Adam SA, Goldman AE, Goldman RD. Nuclear lamin functions and disease. Trends Genet 2012; 28: 464 ‐ 471.
dc.identifier.citedreferenceSun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, et al. High‐throughput screening for drugs that modulate intermediate filament proteins. Methods Enzymol 2016; 568: 163 ‐ 185.
dc.identifier.citedreferenceBurke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 2013; 14: 13 ‐ 24.
dc.identifier.citedreferenceWorman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009; 119: 1825 ‐ 1836.
dc.identifier.citedreferenceDavidson PM, Lammerding J. Broken nuclei—lamins, nuclear mechanics, and disease. Trends Cell Biol 2014; 24: 247 ‐ 256.
dc.identifier.citedreferenceTaylor MR, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003; 41: 771 ‐ 780.
dc.identifier.citedreferenceVan Esch H, Agarwal AK, Debeer P, Fryns JP, Garg A. A homozygous mutation in the lamin A/C gene associated with a novel syndrome of arthropathy, tendinous calcinosis, and progeroid features. J Clin Endocrinol Metab 2006; 91: 517 ‐ 521.
dc.identifier.citedreferenceGuenantin AC, Briand N, Bidault G, Afonso P, Bereziat V, Vatier C, et al. Nuclear envelope–related lipodystrophies. Semin Cell Dev Biol 2014; 29: 148 ‐ 157.
dc.identifier.citedreferenceAjluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, et al. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol (Oxf) 2017; 86: 698 ‐ 707.
dc.identifier.citedreferenceDutour A, Roll P, Gaborit B, Courrier S, Alessi MC, Tregouet DA, et al. High prevalence of laminopathies among patients with metabolic syndrome. Hum Mol Genet 2011; 20: 3779 ‐ 3786.
dc.identifier.citedreferenceOmary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312: G628 ‐ G634.
dc.identifier.citedreference1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature 2015; 526: 68 ‐ 74.
dc.identifier.citedreferenceLiu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non‐synonymous SNVs and their functional predictions and annotations. Hum Mutat 2013; 34: E2393 ‐ E2402.
dc.identifier.citedreferenceMalhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK‐dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281: 12093 ‐ 12101.
dc.identifier.citedreferenceSingh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta‐analysis of individual participant data. Clin Gastroenterol Hepatol 2015; 13: 440 ‐ 451.
dc.identifier.citedreferenceRomeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40: 1461 ‐ 1465.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.