Show simple item record

Rohrs’ Example Revisited: On the Robustness of Adaptive Iterative Learning Control

dc.contributor.authorAltın, Berk
dc.contributor.authorBarton, Kira
dc.date.accessioned2018-06-11T17:59:06Z
dc.date.available2019-07-01T14:52:16Zen
dc.date.issued2018-05
dc.identifier.citationAltın, Berk ; Barton, Kira (2018). "Rohrs’ Example Revisited: On the Robustness of Adaptive Iterative Learning Control." Asian Journal of Control 20(3): 993-1002.
dc.identifier.issn1561-8625
dc.identifier.issn1934-6093
dc.identifier.urihttps://hdl.handle.net/2027.42/144230
dc.description.abstractAdaptive feedback based methods in iterative learning control (ILC) have garnered much interest from researchers for some time now. Much as in adaptive feedback control, most of these methods use Lyapunov functions and positive real transfer functions to prove convergence and boundedness of system signals updated through iterative estimations. While Rohrs et al. have motivated further research on the design of robust adaptive feedback controllers by demonstrating in the early 1980’s that the algorithms of the time were not robust in the presence of unmodeled dynamics, the topic of robustness has not been studied much in the adaptive iterative learning control (AILC) literature. Inspired by Rohrs’ counterexample, we use a model reference AILC scheme to show the lack of robustness to unmodeled dynamics in AILC. We rigorously define the concept of stability in ILC via L2 space concepts, and demonstrate the existence of unstable learning operators. We put forth linear systems arguments to explain how conditions leading to instability can occur, and support heuristic arguments with simulation examples. Our findings indicate that the shortcomings of AILC in terms of robustness are no different than those of adaptive feedback, with the robustness issue more severe in certain cases, and further research is necessary to design robust AILC schemes.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheriterative methods
dc.subject.otheradaptive control
dc.subject.othermodel reference adaptive control
dc.subject.otherlearning control
dc.subject.otherRobustness
dc.titleRohrs’ Example Revisited: On the Robustness of Adaptive Iterative Learning Control
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering and Computer Science Engineering
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144230/1/asjc1788_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144230/2/asjc1788.pdf
dc.identifier.doi10.1002/asjc.1788
dc.identifier.sourceAsian Journal of Control
dc.identifier.citedreferenceSun, D. and J. K. Mills, â Highâ accuracy trajectory tracking of industrial robot manipulator using adaptiveâ learning scheme,â Vol 3, Proc. Amer. Control Conf., San Diego, CA, USA, pp. 1935 â 1939 ( 1999 ).
dc.identifier.citedreferenceAstrom, K. J., â Interactions between excitation and unmodeled dynamics in adaptive control,â Vol. 23, 23rd IEEE Conf. Decis. Control, Las Vegas, NV, USA, pp. 1276 â 1281 ( 1984 ).
dc.identifier.citedreferenceBristow, D. A., M. Tharayil, and A. G. Alleyne, â A survey of iterative learning control,â IEEE Control Syst., Vol. 26, No. 3, pp. 96 â 114 ( 2006 ).
dc.identifier.citedreferenceBristow, D. A., K. L. Barton, and A. G. Alleyne, â Iterative learning control,â In Levine, W. S.  (Ed.) The Control Handbook, CRC Press, Salem, MA ( 2010 ).
dc.identifier.citedreferenceCao, C. and N. Hovakimyan, L 1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, Society for Industrial and Applied Mathematics, Philadelphia, PA ( 2010 ).
dc.identifier.citedreferenceChien, C.â J. and A. Tayebi, â Further results on adaptive iterative learning control of robot manipulators,â Automatica, Vol. 44, No. 3, pp. 830 â 837 ( 2008 ).
dc.identifier.citedreferenceChien, C.â J. and C.â Y. Yao, â Iterative learning of model reference adaptive controller for uncertain nonlinear systems with only output measurement,â Automatica, Vol. 40, No. 5, pp. 855 â 864 ( 2004 ).
dc.identifier.citedreferenceChoi, J. Y. and J. S. Lee, â Adaptive iterative learning control of uncertain robotic systems,â IEE Proc. Control Theory, Vol. 147, No. 6, pp. 217 â 223 ( 2000 ).
dc.identifier.citedreferenceDe Roover, D. and O. H. Bosgra, â Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system,â Int. J. Control, Vol. 73, No. 10, pp. 968 â 979 ( 2000 ).
dc.identifier.citedreferenceFrench, M., G. Munde, E. Rogers, and D. H. Owens, â Recent developments in adaptive iterative learning control,â Vol. 1, Proc. 38th IEEE Conf. Decis. Control, Phoenix, AZ, USA, pp. 264 â 269 ( 1999 ).
dc.identifier.citedreferenceFrench, M. and E. Rogers, â Nonâ linear iterative learning by an adaptive Lyapunov technique,â Int. J. Control, Vol. 73, No. 10, pp. 840 â 850 ( 2000 ).
dc.identifier.citedreferenceIoannou, P. A. and J. Sun, Robust Adaptive Control, Prenticeâ Hall, Upper Saddle River, NJ ( 1996 ).
dc.identifier.citedreferenceOrtega, R. and Y. Tang, â Robustness of adaptive controllersâ A survey,â Automatica, Vol. 25, No. 5, pp. 651 â 677 ( 1989 ).
dc.identifier.citedreferenceOwens, D. H. and G. Munde, â Error convergence in an adaptive iterative learning controller,â Int. J. Control, Vol. 73, No. 10 pp. 851 â 857 ( 2000 ).
dc.identifier.citedreferenceRohrs, C. E., L. Valavani, M. Athans, and G. Stein, â Robustness of continuousâ time adaptive control algorithms in the presence of unmodeled dynamics,â IEEE Trans. Autom. Control, Vol. 30, No. 9 pp. 881 â 889 ( 1985 ).
dc.identifier.citedreferenceTayebi, A., â Model reference adaptive iterative learning control for linear systems,â Int. J. Adapt. Control Signal Process., Vol. 20, No. 9, pp. 475 â 489 ( 2006 ).
dc.identifier.citedreferenceTayebi, A., â Adaptive iterative learning control for robot manipulators,â Automatica, Vol. 40, No. 7 pp. 1195 â 1203 ( 2004 ).
dc.identifier.citedreferenceTian, Y.â P. and X. Yu, â Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties,â Automatica, Vol. 39, No. 11, pp. 1957 â 1966 ( 2003 ).
dc.identifier.citedreferenceWang, X.â S., C.â Y. Su, and H. Hong, â Robust adaptive control of a class of nonlinear systems with unknown deadâ zone,â Automatica, Vol. 40, No. 3, pp. 407 â 413 ( 2004 ).
dc.identifier.citedreferenceXu, J.â X., â A survey on iterative learning control for nonlinear systems,â Int. J. Control, Vol. 84, No. 7, pp. 1275 â 1294 ( 2011 ).
dc.identifier.citedreferenceXu, J.â X. and B. Viswanathan, â Adaptive robust iterative learning control with dead zone scheme,â Automatica, Vol. 36, No. 1 pp. 91 â 99 ( 2000 ).
dc.identifier.citedreferenceYucelen, T., G. De La Torre, and E. N. Johnson, â Frequencyâ limited adaptive control architecture for transient response improvement,â Amer. Control Conf., Washington, DC, USA, pp. 6631 â 6636 ( 2013 ).
dc.identifier.citedreferenceAhn, H.â S., Y.â Q. Chen, and K. L. Moore, â Iterative learning control: Brief survey and categorization,â IEEE Trans. Syst. Man Cybern. C: Applicat. Rev., Vol. 37, No. 6, pp. 1099 â 1121 ( 2007 ).
dc.identifier.citedreferenceAltın, B. and K. Barton, â Exponential stability of nonlinear differential repetitive processes with applications to iterative learning control,â Automatica, Vol. 81, pp. 369 â 376 ( 2017 ).
dc.identifier.citedreferenceAnderson, B. D. O., â Failures of adaptive control theory and their resolution,â Commun. Inform. Syst., Vol. 5, No. 1, pp. 1 â 20 ( 2005 ).
dc.identifier.citedreferenceAstrom, K., â A commentary on the C.E. Rohrs et al. paper â robustness of continuousâ time adaptive control algorithms in the presence of unmodeled dynamicsâ ,â IEEE Trans. Autom. Control, Vol. 30, No. 9, pp. 889 â 889 ( 1985 ).
dc.identifier.citedreferenceAstrom, K. J., â Analysis of Rohrs counterexamples to adaptive control,â Vol. 22, 22nd IEEE Conf. Decis. Control, San Antonio, TX, USA, pp. 982 â 987 ( 1983 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.