Show simple item record

Interactions between large and small detritivores influence how biodiversity impacts litter decomposition

dc.contributor.authorTonin, Alan M.
dc.contributor.authorPozo, Jesús
dc.contributor.authorMonroy, Silvia
dc.contributor.authorBasaguren, Ana
dc.contributor.authorPérez, Javier
dc.contributor.authorGonçalves, José F.
dc.contributor.authorPearson, Richard
dc.contributor.authorCardinale, Bradley J.
dc.contributor.authorBoyero, Luz
dc.date.accessioned2018-09-04T20:08:40Z
dc.date.available2019-11-01T15:10:32Zen
dc.date.issued2018-09
dc.identifier.citationTonin, Alan M.; Pozo, Jesús ; Monroy, Silvia; Basaguren, Ana; Pérez, Javier ; Gonçalves, José F. ; Pearson, Richard; Cardinale, Bradley J.; Boyero, Luz (2018). "Interactions between large and small detritivores influence how biodiversity impacts litter decomposition." Journal of Animal Ecology 87(5): 1465-1474.
dc.identifier.issn0021-8790
dc.identifier.issn1365-2656
dc.identifier.urihttps://hdl.handle.net/2027.42/145535
dc.description.abstractUnderstanding how biodiversity loss influences plant litter decomposition—that is, the biologically mediated conversion of coarse to fine particulate organic matter—is crucial to predict changes in the functioning of many stream ecosystems, where detrital food webs are dominant. Rates of litter decomposition are influenced by detritivore diversity, but the mechanisms behind this relationship are uncertain.As differences in detritivore body size are a major determinant of interspecific interactions, they should be key for predicting effects of detritivore diversity on decomposition. To explore this question, we manipulated detritivore diversity and body size simultaneously in a microcosm experiment using two small (Leuctra geniculata and Lepidostoma hirtum) and two large detritivore species (Sericostoma pyrenaicum and Echinogammarus berilloni) in all possible 1‐, 2‐ and 4‐species combinations, and litter discs of Alnus glutinosa.We expected that larger species would facilitate smaller species through the production of smaller litter fragments, resulting in faster decomposition and greater growth of smaller species in polycultures containing species of different body size. To examine this hypothesis, we used a set of “diversity–interaction” models that explored how decomposition was affected by different interspecific interactions and the role of body size, and quantified the magnitude of such effect through ratios of decomposition rates and detritivore growth between polycultures and monocultures.We found a clear positive effect of detritivore diversity on decomposition, which was mainly explained by facilitation and niche partitioning. Facilitation of small animals by larger ones was evidenced by a 12% increase in decomposition rates in polycultures compared to monocultures and the higher growth (20%) of small species, which partly fed on fine particulate organic matter produced by larger animals. When the large species were together in polycultures, decomposition was enhanced by 19%, but there were no changes in growth; niche partitioning was a plausible mechanism behind the increase in decomposition rates, as both species fed on different parts of litter discs, only one species being able to eat less palatable parts.Our study demonstrates that interspecific differences in body size should be taken into account in diversity–decomposition studies. Future studies should also consider differences in species’ vulnerability to extinction depending on body size and how this might affect ecosystem functioning in different scenarios of detritivore diversity and more complex food webs.Detritivore body size is a major determinant of interspecific interactions and should be key for predicting effects of detritivore diversity on decomposition. Here, the authors show that detritivore diversity enhances litter decomposition mainly due to facilitation of smaller detritivores by larger ones and niche partitioning between large species.
dc.publisherR Foundation for Statistical Computing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspecies richness
dc.subject.otherstreams
dc.subject.otherecosystem functioning
dc.subject.otherdetritivore assemblages
dc.subject.otherbody size
dc.subject.otherfacilitation
dc.subject.otherresource partitioning
dc.titleInteractions between large and small detritivores influence how biodiversity impacts litter decomposition
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145535/1/jane12876.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145535/2/jane12876_am.pdf
dc.identifier.doi10.1111/1365-2656.12876
dc.identifier.sourceJournal of Animal Ecology
dc.identifier.citedreferencePetchey, O. L., Beckerman, A. P., Riede, J. O., & Warren, P. H. ( 2008 ). Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 4191 – 4196. https://doi.org/10.1073/pnas.0710672105
dc.identifier.citedreferenceJabiol, J., McKie, B. G., Bruder, A., Bernadet, C., Gessner, M. O., & Chauvet, E. ( 2013 ). Trophic complexity enhances ecosystem functioning in an aquatic detritus‐based model system. Journal of Animal Ecology, 82, 1042 – 1051. https://doi.org/10.1111/1365-2656.12079
dc.identifier.citedreferenceJiang, L., Pu, Z., & Nemergut, D. R. ( 2008 ). On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos, 117, 488 – 493. https://doi.org/10.1111/j.0030-1299.2008.16401.x
dc.identifier.citedreferenceJonsson, M., & Malmqvist, B. ( 2000 ). Ecosystem process rate increases with animal species richness: Evidence from leaf‐eating, aquatic insects. Oikos, 89, 519 – 523. https://doi.org/10.1034/j.1600-0706.2000.890311.x
dc.identifier.citedreferenceJonsson, M., & Malmqvist, B. ( 2003 ). Mechanisms behind positive diversity effects on ecosystem functioning: Testing the facilitation and interference hypotheses. Oecologia, 134, 554 – 559. https://doi.org/10.1007/s00442-002-1148-5
dc.identifier.citedreferenceKirwan, L., Connolly, J., Finn, J. A., Brophy, C., Lüscher, A., Nyfeler, D., & Sebastia, M.‐T. ( 2009 ). Diversity–interaction modeling: Estimating contributions of species identities and interactions to ecosystem function. Ecology, 90, 2032 – 2038. https://doi.org/10.1890/08-1684.1
dc.identifier.citedreferenceLarrañaga, A., Basaguren, A., & Pozo, J. ( 2014 ). Resource quality controls detritivore consumption, growth, survival and body condition recovery of reproducing females. Marine and Freshwater Research, 65, 910 – 917. https://doi.org/10.1071/MF13165
dc.identifier.citedreferenceLópez‐Rodríguez, M. J., Tierno de Figueroa, J. M., Bo, T., Mogni, A., & Fenoglio, S. ( 2012 ). Living apart together: On the biology of two sympatric Leuctra species (Plecoptera, Leuctridae) in an Apenninic stream, Italy. International Review of Hydrobiology, 2, 117 – 123. https://doi.org/10.1002/iroh.201111413
dc.identifier.citedreferenceLoreau, M., & Hector, A. ( 2001 ). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72 – 76. https://doi.org/10.1038/35083573
dc.identifier.citedreferenceMayer, G., Maas, A., & Waloszek, D. ( 2012 ). Mouthpart morphology of three sympatric native and nonnative Gammaridean species: Gammarus pulex, G. fossarum, and Echinogammarus berilloni (Crustacea: Amphipoda). International Journal of Zoology, 2012, 493420.
dc.identifier.citedreferenceMcKie, B. G., Schindler, M., Gessner, M. O., & Malmqvist, B. ( 2009 ). Placing biodiversity and ecosystem functioning in context: Environmental perturbations and the effects of species richness in a stream field experiment. Oecologia, 160, 757 – 770. https://doi.org/10.1007/s00442-009-1336-7
dc.identifier.citedreferenceMcKie, B. G., Woodward, G., Hladyz, S., Nistorescu, M., Preda, E., Popescu, C., … Malmqvist, B. ( 2008 ). Ecosystem functioning in stream assemblages from different regions: Contrasting responses to variation in detritivore richness, evenness and density. Journal of Animal Ecology, 77, 495 – 504. https://doi.org/10.1111/j.1365-2656.2008.01357.x
dc.identifier.citedreferencePetchey, O. L., & Gaston, K. J. ( 2002 ). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402 – 411. https://doi.org/10.1046/j.1461-0248.2002.00339.x
dc.identifier.citedreferencePetchey, O. L., McPhearson, P. T., Casey, T. M., & Morin, P. J. ( 1999 ). Environmental warming alters food‐web structure and ecosystem function. Nature, 402, 69 – 72. https://doi.org/10.1038/47023
dc.identifier.citedreferencePeters, R. H. ( 1983 ). The ecological implications of body‐size. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferencePinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team ( 2016 ). nlme: Linear and nonlinear mixed effects models. R package.
dc.identifier.citedreferenceR Core Team ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceRaffaelli, D. ( 2004 ). How extinction patterns affect ecosystems. Science, 306, 1141 – 1142. https://doi.org/10.1126/science.1106365
dc.identifier.citedreferenceReiss, J., Bailey, R. A., Perkins, D. M., Pluchinotta, A., & Woodward, G. ( 2011 ). Testing effects of consumer richness, evenness and body size on ecosystem functioning. Journal of Animal Ecology, 80, 1145 – 1154. https://doi.org/10.1111/j.1365-2656.2011.01857.x
dc.identifier.citedreferenceRiaño, P. ( 1998 ). Ciclos biológicos y ecología trófica de los macroinvertebrados del bentos fluvial (Plecoptera, Ephemeroptera y Trichoptera). Bilbao, Spain: University of the Basque Country.
dc.identifier.citedreferenceScherer‐Lorenzen, M. ( 2008 ). Functional diversity affects decomposition processes in experimental grasslands. Functional Ecology, 22, 547 – 555. https://doi.org/10.1111/j.1365-2435.2008.01389.x
dc.identifier.citedreferenceSchoener, T. W. ( 1974 ). Resource partitioning in ecological communities. Science, 185, 27 – 39. https://doi.org/10.1126/science.185.4145.27
dc.identifier.citedreferenceSrivastava, D., Cardinale, B. J., Downing, A. L., Duffy, J. E., Jouseau, C., Sankaran, M., & Wright, J. P. ( 2009 ). Diversity has stronger top‐down than bottom‐up effects on decomposition. Ecology, 90, 1073 – 1083. https://doi.org/10.1890/08-0439.1
dc.identifier.citedreferenceThébault, E., & Loreau, M. ( 2003 ). Food‐web constraints on biodiversity–ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America, 100, 14949 – 14954. https://doi.org/10.1073/pnas.2434847100
dc.identifier.citedreferenceTonin, A. M., Boyero, L., Monroy, S., Basaguren, A., Pérez, J., Pearson, R. G., … Pozo, J. ( 2017 ). Stream nitrogen concentration, but not plant N‐fixing capacity, modulates litter diversity effects on decomposition. Functional Ecology, 31, 1471 – 1481. https://doi.org/10.1111/1365-2435.12837
dc.identifier.citedreferenceTonin, A. M., Pozo, J., Monroy, S., Basaguren, A., Pérez, J., Pearson, R. G., … Boyero, L. ( 2018 ). Data from: Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. Open Science Framework. https://doi.org/10.17605/OSF.IO/NTM8R
dc.identifier.citedreferenceWoodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. ( 2005 ). Body size in ecological networks. Trends in Ecology and Evolution, 20, 402 – 409. https://doi.org/10.1016/j.tree.2005.04.005
dc.identifier.citedreferenceWright, A. J., Wardle, D. A., Callaway, R., & Gaxiola, A. ( 2017 ). The overlooked role of facilitation in biodiversity experiments. Trends in Ecology and Evolution, 32, 383 – 390. https://doi.org/10.1016/j.tree.2017.02.011
dc.identifier.citedreferenceZuur, A. F., & Ieno, E. N. ( 2015 ). A beginner’s guide to data exploration and visualisation with R. Newburgh, UK: Highland Statistics Ltd.
dc.identifier.citedreferenceZuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. ( 2009 ). Mixed effects models and extensions in ecology with R. New York, NY: Springer.
dc.identifier.citedreferenceFraser, L. H., & Keddy, P. ( 1999 ). The role of experimental microcosms in ecological research. Trends in Ecology and Evolution, 12, 478 – 481.
dc.identifier.citedreferenceBalvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. ( 2006 ). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146 – 1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x
dc.identifier.citedreferenceBasaguren, A., Riaño, P., & Pozo, J. ( 2002 ). Life history patterns and dietary changes of several caddisfly (Trichoptera) species in a northern Spain stream. Archiv für Hydrobiologie, 155, 23 – 41. https://doi.org/10.1127/archiv-hydrobiol/155/2002/23
dc.identifier.citedreferenceBastian, M., Pearson, R. G., & Boyero, L. ( 2008 ). Effects of diversity loss on ecosystem function across trophic levels and ecosystems: A test in a detritus‐based tropical food web. Austral Ecology, 33, 301 – 306. https://doi.org/10.1111/j.1442-9993.2007.01817.x
dc.identifier.citedreferenceBenton, T. G., Solan, M., Travis, J. M. J., & Sait, S. M. ( 2007 ). Microcosm experiments can inform global ecological problems. Trends in Ecology and Evolution, 22, 516 – 521. https://doi.org/10.1016/j.tree.2007.08.003
dc.identifier.citedreferenceBoyero, L., Pearson, R. G., & Bastian, M. ( 2007 ). How biological diversity influences ecosystem function: A test with a tropical stream detritivore guild. Ecological Research, 22, 551 – 558. https://doi.org/10.1007/s11284-006-0303-6
dc.identifier.citedreferenceBoyero, L., Pearson, R. G., Dudgeon, D., Ferreira, V., Graça, M. A. S., Gessner, M. O., … Barmuta, L. A. ( 2012 ). Global patterns of stream detritivore distribution: Implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134 – 141. https://doi.org/10.1111/j.1466-8238.2011.00673.x
dc.identifier.citedreferenceBruno, J. F., Stachowicz, J. J., & Bertness, M. D. ( 2003 ). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18, 119 – 125. https://doi.org/10.1016/S0169-5347(02)00045-9
dc.identifier.citedreferenceCallisto, M., & Graça, M. A. S. ( 2013 ). The quality and availability of fine particulate organic matter for collector species in headwater streams. International Review of Hydrobiology, 98, 132 – 140. https://doi.org/10.1002/iroh.201301524
dc.identifier.citedreferenceCanty, A., & Ripley, B. ( 2016 ). boot: Bootstrap R (S‐Plus) functions. R package version 1.3–18. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceCardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., … Naeem, S. ( 2012 ). Biodiversity loss and its impact on humanity. Nature, 486, 59 – 67. https://doi.org/10.1038/nature11148
dc.identifier.citedreferenceCardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., … Gonzalez, A. ( 2011 ). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572 – 592. https://doi.org/10.3732/ajb.1000364
dc.identifier.citedreferenceCardinale, B. J., Palmer, M. A., & Collins, S. L. ( 2002 ). Species diversity enhances ecosystem functioning through interspecific facilitation. Nature, 415, 426 – 429. https://doi.org/10.1038/415426a
dc.identifier.citedreferenceCardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, M., & Jouseau, C. ( 2006 ). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989 – 992. https://doi.org/10.1038/nature05202
dc.identifier.citedreferenceCebrian, J. ( 1999 ). Patterns in the fate of production in plant communities. The American Naturalist, 154, 449 – 468. https://doi.org/10.1086/303244
dc.identifier.citedreferenceConstantini, M. L., & Rossi, L. ( 2010 ). Species diversity and decomposition in laboratory aquatic systems: The role of species interactions. Freshwater Biology, 55, 2281 – 2295. https://doi.org/10.1111/j.1365-2427.2010.02433.x
dc.identifier.citedreferenceCreed, R. P., Cherry, R. P., Pflaum, J. R., & Wood, C. J. ( 2009 ). Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos, 118, 723 – 732. https://doi.org/10.1111/j.1600-0706.2008.17212.x
dc.identifier.citedreferenceDangles, O., Carpio, C., & Woodward, G. ( 2012 ). Size‐dependent species removal impairs ecosystem functioning in a large‐scale tropical field experiment. Ecology, 93, 2615 – 2625. https://doi.org/10.1890/12-0510.1
dc.identifier.citedreferenceDangles, O., Jonsson, M., & Malmqvist, B. ( 2002 ). The importance of detritivore species diversity for maintaining stream ecosystem functioning following the invasion of a riparian plant. Biological Invasions, 4, 441 – 446. https://doi.org/10.1023/A:1023698121141
dc.identifier.citedreferenceDangles, O., & Malmqvist, B. ( 2004 ). Species richness–decomposition relationships depend on species dominance. Ecology Letters, 7, 395 – 402. https://doi.org/10.1111/j.1461-0248.2004.00591.x
dc.identifier.citedreferenceDavison, A. C., & Hinkley, D. V. ( 1997 ). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511802843
dc.identifier.citedreferenceFox, J. W. ( 2005 ). Interpreting the selection effect of biodiversity on ecosystem function. Ecology Letters, 8, 846 – 856. https://doi.org/10.1111/j.1461-0248.2005.00795.x
dc.identifier.citedreferenceFrainer, A., McKie, B. G., & Malmqvist, B. ( 2014 ). When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology, 83, 460 – 469. https://doi.org/10.1111/1365-2656.12142
dc.identifier.citedreferenceFriberg, N., & Jacobsen, D. J. ( 1994 ). Feeding plasticity of two detritivore‐shredders. Freshwater Biology, 32, 133 – 142. https://doi.org/10.1111/j.1365-2427.1994.tb00873.x
dc.identifier.citedreferenceFynke, D. L., & Snyder, W. E. ( 2008 ). Niche partitioning increases resource exploitation by diverse communities. Science, 321, 1488 – 1490. https://doi.org/10.1126/science.1160854
dc.identifier.citedreferenceGessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. ( 2010 ). Diversity meets decomposition. Trends in Ecology and Evolution, 25, 372 – 380. https://doi.org/10.1016/j.tree.2010.01.010
dc.identifier.citedreferenceHanda, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., … Hattenschwiler, S. ( 2014 ). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218 – 221. https://doi.org/10.1038/nature13247
dc.identifier.citedreferenceHooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., … Wardle, D. A. ( 2005 ). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3 – 35. https://doi.org/10.1890/04-0922
dc.identifier.citedreferenceIwai, N., Pearson, R. G., & Alford, R. A. ( 2009 ). Shredder‐tadpole facilitation of leaf litter decomposition in a tropical stream. Freshwater Biology, 54, 2573 – 2580. https://doi.org/10.1111/j.1365-2427.2009.02267.x
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.