Show simple item record

The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars

dc.contributor.authorPrimm, K. M.
dc.contributor.authorGough, R. V.
dc.contributor.authorWong, J.
dc.contributor.authorRivera‐valentin, E. G.
dc.contributor.authorMartinez, G. M.
dc.contributor.authorHogancamp, J. V.
dc.contributor.authorArcher, P. D.
dc.contributor.authorMing, D. W.
dc.contributor.authorTolbert, M. A.
dc.date.accessioned2018-11-20T15:32:35Z
dc.date.available2019-10-01T16:02:10Zen
dc.date.issued2018-08
dc.identifier.citationPrimm, K. M.; Gough, R. V.; Wong, J.; Rivera‐valentin, E. G. ; Martinez, G. M.; Hogancamp, J. V.; Archer, P. D.; Ming, D. W.; Tolbert, M. A. (2018). "The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars." Journal of Geophysical Research: Planets 123(8): 2076-2088.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/146327
dc.description.abstractThe water uptake and release by perchlorate salts have been well studied since the first in situ identification of such salts in the Martian soil by the Phoenix mission in 2008. However, there have been few studies on the effect of the insoluble regolith minerals on the interaction of perchlorate with water vapor. In this work, we investigate the impact of a Marsâ relevant mineral, montmorillonite, and a Mars soil analog, Mojave Mars Simulant (MMS), on the deliquescence (transition from dry crystalline to aqueous via water vapor absorption), ice formation, and efflorescence (transition from aqueous to dry crystalline via loss of water) of pure magnesium perchlorate. We studied mixtures of magnesium perchlorate hexahydrate with either montmorillonite or MMS. Although montmorillonite and MMS are materials that may serve as nuclei for either ice nucleation or salt efflorescence, we find that these soil analogs did not affect the phase transitions of magnesium perchlorate. The saltâ mineral mixture behaved similarly, within estimated uncertainties, to pure magnesium perchlorate in all cases. Experiments were performed in both N2 and CO2 atmospheres, with no detectable difference. We use data from the Mars Science Laboratory Rover Environmental Monitoring Station instrument and the Phoenix Thermal and Electrical Conductivity Probe, as well as modeling of the shallow subsurface, to determine the likelihood of these perchlorate phase transitions occurring at Gale Crater and the northern arctic plains (Vastitas Borealis). We find that aqueous solutions are predicted in the shallow subsurface of the Phoenix landing site, but not predicted at Gale Crater.Plain Language SummaryMost previous studies on Marsâ relevant salts have looked at the water uptake and release of the pure salts, but few have looked at the effect that insoluble minerals might have on the water uptake and release. This is an important potential effect because the surface of Mars is mainly composed of (~99%) mineral dust and we might not be accurately predicting if liquid solutions are possible on Mars today. However, this study shows that a Marsâ relevant mineral (montmorillonite) and a Mars surface analog (Mojave Mars Simulant) did not have a significant effect on the water uptake of magnesium perchlorate. In addition, the Phoenix landing site is more favorable to support liquid solutions of magnesium perchlorate, rather than Gale Crater (Curiosity’s current site).Key PointsThis paper discusses the water uptake and release of Martian salts, mixed with regolith analogsThe DRH, ERH, and ice RH of magnesium perchlorate were not affected by Marsâ relevant regolith analogsBrines are predicted in the subsurface at PHX site, but not at Gale Crater
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPhoenix
dc.subject.otherperchlorate
dc.subject.otherMars
dc.subject.otherperchlorate and mineral mixtures
dc.subject.otherMSL
dc.subject.otherdeliquescence
dc.titleThe Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146327/1/jgre20992-sup-0001-Primm_SuppInfo_JGR_V4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146327/2/jgre20992_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146327/3/jgre20992.pdf
dc.identifier.doi10.1029/2018JE005540
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferencePant, A., Parsons, M. T., & Bertram, A. K. ( 2006 ). Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: Crystallization relative humidities and nucleation rates. Journal of Physical Chemistry A, 110 ( 28 ), 8701 â 8709. https://doi.org/10.1021/jp060985s
dc.identifier.citedreferenceKiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., & Leisner, T. ( 2017 ). Active sites in heterogeneous ice nucleationâ The example of Kâ rich feldspars. Science, 355 ( January ), 367 â 371.
dc.identifier.citedreferenceLadino, L. a., & Abbatt, J. P. D. ( 2013 ). Laboratory investigation of Martian water ice cloud formation using dust aerosol simulants. Journal of Geophysical Research: Planets, 118, 14 â 25. https://doi.org/10.1029/2012JE004238
dc.identifier.citedreferenceMarion, G. M., Catling, D. C., Zahnle, K. J., & Claire, M. W. ( 2010 ). Modeling aqueous perchlorate chemistries with applications to Mars. Icarus, 207 ( 2 ), 675 â 685. https://doi.org/10.1016/j.icarus.2009.12.003
dc.identifier.citedreferenceMarshall, C. P., & Olcott Marshall, A. ( 2015 ). Challenges analyzing gypsum on Mars by Raman spectroscopy. Astrobiology, 15 ( 9 ), 761 â 769. https://doi.org/10.1089/ast.2015.1334
dc.identifier.citedreferenceMartínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 â 102. https://doi.org/10.1016/j.icarus.2015.12.004
dc.identifier.citedreferenceMartínez, G. M., Newman, C. N., De Vicenteâ Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern nearâ surface Martian climate: A review of inâ situ meteorological data from Viking to Curiosity. Space Science Reviews, 212 ( 1â 2 ), 339 â 340. https://doi.org/10.1007/s11214â 017â 0368â 2
dc.identifier.citedreferenceNavarroâ González, R., Vargas, E., de la Rosa, J., Raga, A. C., & McKay, C. P. ( 2010 ). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. Journal of Geophysical Research, 115, E12010. https://doi.org/10.1029/2010JE003599
dc.identifier.citedreferenceNikolakakos, G., & Whiteway, J. A. ( 2015 ). Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophysical Research Letters, 42, 7899 â 7906. https://doi.org/10.1002/2015GL065434
dc.identifier.citedreferenceNikolakakos, G., & Whiteway, J. A. ( 2018 ). Laboratory study of adsorption and deliquescence on the surface of Mars. Icarus, 308, 221 â 229. https://doi.org/10.1016/j.icarus.2017.05.006
dc.identifier.citedreferenceNuding, D. L., Riveraâ Valentin, E. G., Davis, R. D., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420 â 428. https://doi.org/10.1016/j.icarus.2014.08.036
dc.identifier.citedreferenceOjha, L., Wilhelm, M. B., Murchie, S. L., Mcewen, A. S., Wray, J. J., Hanley, J., et al. ( 2015 ). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 8 ( 11 ), 829 â 832. https://doi.org/10.1038/NGEO2546
dc.identifier.citedreferencePestova, O. N., Myund, L. A., Khripun, M. K., & Prigaro, A. V. ( 2005 ). Polythermal study of the systems M (ClO4)2â H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russian Journal of Applied Chemistry, 78 ( 3 ), 409 â 413. https://doi.org/10.1007/s11167â 005â 0306â z
dc.identifier.citedreferencePeters, G. H., Abbey, W., Bearman, G. H., Mungas, G. S., Smith, J. A., Anderson, R. C., et al. ( 2008 ). Mojave Mars simulantâ Characterization of a new geologic Mars analog. Icarus, 197 ( 2 ), 470 â 479. https://doi.org/10.1016/j.icarus.2008.05.004
dc.identifier.citedreferencePrimm, K. M., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2017 ). Freezing of perchlorate and chloride brines under Marsâ relevant conditions. Geochimica et Cosmochimica Acta, 212, 211 â 220. https://doi.org/10.1016/j.gca.2017.06.012
dc.identifier.citedreferenceReid, J. P., & Sayer, R. M. ( 2003 ). Heterogeneous atmospheric aerosol chemistry: Laboratory studies of chemistry on water droplets. Chemical Society Reviews, 32 ( 2 ), 70 â 79. https://doi.org/10.1039/b204463n
dc.identifier.citedreferenceRiveraâ Valentin, E. G., Blackburn, D. G., & Ulrich, R. ( 2011 ). Revisiting the thermal inertia of Iapetus: Clues to the thickness of the dark material. Icarus, 216 ( 1 ), 347 â 358. https://doi.org/10.1016/j.icarus.2011.09.006
dc.identifier.citedreferenceRobertson, K., & Bish, D. ( 2011 ). Stability of phases in the Mg (ClO4)2·nH2O system and implications for perchlorate occurrences on Mars. Journal of Geophysical Research, 116, E07006. https://doi.org/10.1029/2010JE003754
dc.identifier.citedreferenceSchill, G. P., & Tolbert, M. A. ( 2013 ). Heterogeneous ice nucleation on phaseâ separated organicâ sulfate particles: effect of liquid vs. glassy coatings. Atmospheric Chemistry and Physics, 13, 4681 â 4695. https://doi.org/10.5194/acp-13-4681-2013
dc.identifier.citedreferenceSmith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H 2 O at the Phoenix landing site. Science 325, 58 â 61.
dc.identifier.citedreferenceToner, J. D., Catling, D. C., & Light, B. ( 2014 ). The formation of supercooled brines, viscous liquids, and lowâ temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus, 233, 36 â 47. https://doi.org/10.1016/j.icarus.2014.01.018
dc.identifier.citedreferenceToner, J. D., Catling, D. C., & Light, B. ( 2015 ). A revised Pitzer model for lowâ temperature soluble salt assemblages at the Phoenix site, Mars. Geochimica et Cosmochimica Acta, 166, 327 â 343. https://doi.org/10.1016/j.gca.2015.06.011
dc.identifier.citedreferenceUshijima, S. B., Davis, R. D., & Tolbert, M. A. ( 2018 ). Immersion and contact efflorescence induced by mineral dust particles. Journal of Physical Chemistry A, 122 ( 5 ), 1303 â 1311. https://doi.org/10.1021/acs.jpca.7b12075
dc.identifier.citedreferenceVasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 â 386. https://doi.org/10.1016/j.icarus.2016.11.035
dc.identifier.citedreferenceWelti, A., Lüönd, F., Stetzer, O., & Lohmann, U. ( 2009 ). Influence of particle size on the ice nucleating ability of mineral dusts. Atmospheric Chemistry and Physics, 6705 â 6715. Retrieved from http://www.atmosâ chemâ phys.net/9/6705/
dc.identifier.citedreferenceZent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the Thermal and Electrical Conductivity Probe (TECP) on phoenix. Journal of Geophysical Research, 115, E00E14. https://doi.org/10.1029/2009JE003420
dc.identifier.citedreferenceZent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121, 626 â 651. https://doi.org/10.1002/2015JE004933
dc.identifier.citedreferenceZorzano, M.â P., Mateoâ Martí, E., Prietoâ Ballesteros, O., Osuna, S., & Renno, N. ( 2009 ). Stability of liquid saline water on present day Mars. Geophysical Research Letters, 36, L20201. https://doi.org/10.1029/2009GL040315
dc.identifier.citedreferenceAssemi, S., Sharma, S., Tadjiki, S., Prisbrey, K., Ranville, J., & Miller, J. D. ( 2015 ). Effect of surface charge and elemental composition on the swelling and delamination of montmorillonite nanoclays using sedimentation fieldâ flow fractionation and mass spectroscopy. Clays and Clay Minerals, 63 ( 6 ), 457 â 468. https://doi.org/10.1346/CCMN.2015.0630604
dc.identifier.citedreferenceBaustian, K. J., Wise, M. E., & Tolbert, M. A. ( 2010 ). Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmospheric Chemistry and Physics, 10, 2307 â 2317. https://doi.org/10.5194/acp-10-2307-2010
dc.identifier.citedreferenceBristow, T. F., Blake, D. F., Vaniman, D. T., Chipera, S. J., Rampe, E. B., Grotzinger, J. P., et al. ( 2017 ). Surveying clay mineral diversity in the Murray Formation, Gale Crater, Mars. LPSC Abstract, 48, 9 â 10. Retrieved from https://ntrs.nasa.gov/search.jsp? R=20170001744
dc.identifier.citedreferenceBryant, G. W., Hallett, J., & Mason, B. J. ( 1960 ). The epitaxial growth of ice on singleâ crystalline substrates. Journal of Physics and Chemistry of Solids, 12 ( 2 ), 189 â IN18. https://doi.org/10.1016/0022â 3697(60)90036â 6
dc.identifier.citedreferenceCarter, J., Loizeau, D., Mangold, N., Poulet, F., & Bibring, J. ( 2015 ). Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373 â 382. https://doi.org/10.1016/j.icarus.2014.11.011
dc.identifier.citedreferenceChevrier, V. F., Hanley, J., & Altheide, T. S. ( 2009 ). Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, mars. Geophysical Research Letters, 36, L10202. https://doi.org/10.1029/2009GL037497
dc.identifier.citedreferenceChevrier, V. F., & Riveraâ Valentin, E. G. ( 2012 ). Formation of recurring slope lineae by liquid brines on presentâ day Mars. Geophysical Research Letters, 39, L21202. https://doi.org/10.1029/2012GL054119
dc.identifier.citedreferenceCull, S. C., Arvidson, R. E., Catalano, J. G., Ming, D. W., Morris, R. V., Mellon, M. T., & Lemmon, M. ( 2010 ). Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203. https://doi.org/10.1029/2010GL045269
dc.identifier.citedreferenceCziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M., et al. ( 2013 ). Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340 ( 6138 ), 1320 â 1324. https://doi.org/10.1126/science.1234145
dc.identifier.citedreferenceDavis, R. D., Lance, S., Gordon, J. A., Ushijima, S. B., & Tolbert, M. A. ( 2015 ). Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proceedings of the National Academy of Sciences, 112 ( 52 ), 15,815 â 15,820. https://doi.org/10.1073/pnas.1522860113
dc.identifier.citedreferenceDavis, R. D., & Tolbert, M. A. ( 2017 ). Crystal nucleation initiated by transient ionâ surface interactions at aerosol interfaces. Science Advances, 3 ( 7 ), e1700425. https://doi.org/10.1126/sciadv.1700425
dc.identifier.citedreferenceDollfus, A., & Deschamps, M. ( 1986 ). Grainâ size determination at the surface of Mars. Icarus, 67 ( 1 ), 37 â 50. https://doi.org/10.1016/0019â 1035(86)90172â 7
dc.identifier.citedreferenceEhlmann, B. L., & Edwards, C. S. ( 2014 ). Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences, 42 ( 1 ), 291 â 315. https://doi.org/10.1146/annurevâ earthâ 060313â 055024
dc.identifier.citedreferenceFischer, E., Martínez, G., Elliot, H. M., & Rennó, N. O. ( 2014 ). Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 41, 4456 â 4462. https://doi.org/10.1002/2014GL060302.Received
dc.identifier.citedreferenceFischer, E., Martínez, G. M., & Rennó, N. O. ( 2016 ). Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16 ( 12 ), 937 â 948. https://doi.org/10.1089/ast.2016.1525
dc.identifier.citedreferenceFrinak, E. K., Mashburn, C. D., Tolbert, M. A., & Toon, O. B. ( 2005 ). Infrared characterization of water uptake by lowâ temperature Naâ montmorillonite: Implications for Earth and Mars. Journal of Geophysical Research, 110, D09308. https://doi.org/10.1029/2004JD005647
dc.identifier.citedreferenceGlavin, D. P., Freissinet, C., Miller, K. E., Eigenbrode, J. L., Brunner, A. E., Buch, A., et al. ( 2013 ). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research: Planets, 118, 1955 â 1973. https://doi.org/10.1002/jgre.20144
dc.identifier.citedreferenceGough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E., & Tolbert, M. A. ( 2011 ). Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars. Earth and Planetary Science Letters, 312 ( 3â 4 ), 371 â 377. https://doi.org/10.1016/j.epsl.2011.10.026
dc.identifier.citedreferenceGough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Formation of aqueous solutions on Mars via deliquescence of chlorideâ perchlorate binary mixtures. Earth and Planetary Science Letters, 393, 73 â 82. https://doi.org/10.1016/j.epsl.2014.02.002
dc.identifier.citedreferenceHamilton, V. E., Vasavada, A. R., Sebastián, E., De La Torre Juárez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets, 119, 745 â 770. https://doi.org/10.1002/2013JE004520
dc.identifier.citedreferenceHan, J., & Martin, S. T. ( 1999 ). Heterogeneous nucleation of the efflorescence of (NH4)2SO4 particles internally mixed with AlzO3, TiOz, and ZrOz. Journal of Geophysical Research, 104, 3543 â 3553. https://doi.org/10.1029/1998JD100072
dc.identifier.citedreferenceHan, J. H., Hung, H. M., & Martin, S. T. ( 2001 ). The size effect of hematite and corundum inclusions on the efflorescence relative humidities of aqueous ammonium sulfate particles. Geophysical Research Letters, 28, 2601 â 2604. https://doi.org/10.1029/2001GL013120
dc.identifier.citedreferenceHarri, A., Genzer, M., Kemppinen, O., Haberle, R., Polkko, J., Savijärvi, H., et al. ( 2014 ). Mars Science Laboratory relative humidity observations: Initial results special section. Journal of Geophysical Research: Planets, 119, 2132 â 2147. https://doi.org/10.1002/2013JE004514.Received
dc.identifier.citedreferenceHecht, M., Kounaves, S., Quinn, R., West, S., Young, S., Ming, D., et al. ( 2009 ). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science, 325, 64 â 67. Retrieved from http://www.sciencemag.org/content/325/5936/64.short
dc.identifier.citedreferenceHoose, C., & Möhler, O. ( 2012 ). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12 ( 20 ), 9817 â 9854. https://doi.org/10.5194/acpâ 12â 9817â 2012
dc.identifier.citedreferenceKereszturi, A., & Riveraâ Valentin, E. G. ( 2012 ). Locations of thin liquid water layers on presentâ day Mars. Icarus, 221 ( 1 ), 289 â 295. https://doi.org/10.1016/j.icarus.2012.08.004
dc.identifier.citedreferenceKihara, K. ( 1990 ). An Xâ ray study of the temperature dependence of the quartz structure. European Journal of Mineralogy, 2 ( 1 ), 63 â 78. https://doi.org/10.1127/ejm/2/1/0063
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.