Show simple item record

Nonlinear Drift Resonance Between Charged Particles and Ultralow Frequency Waves: Theory and Observations

dc.contributor.authorLi, Li
dc.contributor.authorZhou, Xu‐zhi
dc.contributor.authorOmura, Yoshiharu
dc.contributor.authorWang, Zi‐han
dc.contributor.authorZong, Qiu‐gang
dc.contributor.authorLiu, Ying
dc.contributor.authorHao, Yi‐xin
dc.contributor.authorFu, Sui‐yan
dc.contributor.authorKivelson, Margaret G.
dc.contributor.authorRankin, Robert
dc.contributor.authorClaudepierre, Seth G.
dc.contributor.authorWygant, John R.
dc.date.accessioned2018-11-20T15:34:47Z
dc.date.available2019-11-01T15:10:33Zen
dc.date.issued2018-09-16
dc.identifier.citationLi, Li; Zhou, Xu‐zhi ; Omura, Yoshiharu; Wang, Zi‐han ; Zong, Qiu‐gang ; Liu, Ying; Hao, Yi‐xin ; Fu, Sui‐yan ; Kivelson, Margaret G.; Rankin, Robert; Claudepierre, Seth G.; Wygant, John R. (2018). "Nonlinear Drift Resonance Between Charged Particles and Ultralow Frequency Waves: Theory and Observations." Geophysical Research Letters 45(17): 8773-8782.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/146432
dc.description.abstractIn Earth’s inner magnetosphere, electromagnetic waves in the ultralow frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift resonance theory, linearization is applied under the assumption of weak waveâ particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here we extend the drift resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a waveâ carried potential well, and predict the corresponding observable signatures such as rolledâ up structures in particle energy spectrum. After considering how this manifests in particle data with finite energy resolution, we compare the predicted signatures with Van Allen Probes observations. Their good agreement provides the first observational evidence for the occurrence of nonlinear drift resonance, highlighting the importance of nonlinear effects in magnetospheric particle dynamics under ULF waves.Plain Language SummaryIn Earth’s Van Allen radiation belts, ultralow frequency (ULF) waves in the frequency range between 2 and 22 mHz play a crucial role in accelerating charged particles via a resonant process named drift resonance. When such a resonance occurs, a resonant particle observes a constant phase of the wave electric field, and it experiences a net energy excursion. In previous studies of drift resonance, a linearization approach is often applied with assumption of a weak waveâ particle energy exchange. In this study, we extend the linear theory into the nonlinear regime to formulate the particle behavior in the ULF wave field, and predict characteristic signatures of the nonlinear process observable from a virtual magnetospheric spacecraft. Such newly predicted signatures are found to agree with observations from the National Aeronautics and Space Administration’s Van Allen Probes, which provides the first identification of nonlinear drift resonance and highlights the importance of nonlinear effects in ULF waveâ particle interactions in the Van Allen radiation belts.Key PointsThe nonlinear theory of ULF waveâ particle drift resonance is developed to formulate the behavior of charged particles in ULF wave fieldSignatures of nonlinear drift resonance include rolledâ up structures and/or multiperiod oscillations in the particle energy spectrumIn situ observations of the newly predicted signatures validate the theory and provide a first identification of nonlinear drift resonance
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherparticle acceleration
dc.subject.othernonlinear process
dc.subject.otherdrift resonance
dc.subject.otherwaveâ particle interactions
dc.subject.otherULF waves
dc.subject.otherradiation belts
dc.titleNonlinear Drift Resonance Between Charged Particles and Ultralow Frequency Waves: Theory and Observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146432/1/grl57916_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146432/2/grl57916.pdf
dc.identifier.doi10.1029/2018GL079038
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSarris, T. E., Li, X., Temerin, M., Zhao, H., Califf, S., Liu, W., & Ergun, R. ( 2017 ). On the relationship between electron flux oscillations and ULF waveâ driven radial transport. Journal of Geophysical Research: Space Physics, 122, 9306 â 9319. https://doi.org/10.1002/2016JA023741
dc.identifier.citedreferenceAnderson, B. J., Engebretson, M. J., Rounds, S. P., Zanetti, L. J., & Potemra, T. A. ( 1990 ). A statistical study of Pc 3â 5 pulsations observed by the AMPTE/CCE Magnetic Fields Experiment. 1. Occurrence distributions. Journal of Geophysical Research, 95, 10,495 â 10,523. https://doi.org/10.1029/JA095iA07p10495
dc.identifier.citedreferenceCummings, W. D., O’Sullivan, R. J., & Coleman Jr., P. J. ( 1969 ). Standing Alfven waves in the magnetosphere. Journal of Geophysical Research, 74, 778 â 793.
dc.identifier.citedreferenceDai, L., Takahashi, K., Wygant, J. R., Chen, L., Bonnell, J., Cattell, C. A., et al. ( 2013 ). Excitation of poloidal standing Alfven waves through drift resonance waveâ particle interaction. Geophysical Research Letters, 40, 4127 â 4132. https://doi.org/10.1002/grl.50800
dc.identifier.citedreferenceDegeling, A. W., Ozeke, L. G., Rankin, R., Mann, I. R., & Kabin, K. ( 2008 ). Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves. Journal of Geophysical Research, 113, A02208. https://doi.org/10.1029/2007JA012411
dc.identifier.citedreferenceDegeling, A. W., Rankin, R., Kabin, K., Marchand, R., & Mann, I. R. ( 2007 ). The effect of ULF compressional modes and field line resonances on relativistic electron dynamics. Planetary and Space Science, 55, 731 â 742. https://doi.org/10.1016/j.pss.2006.04.039
dc.identifier.citedreferenceElkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202
dc.identifier.citedreferenceFoster, J. C., Wygant, J. R., Hudson, M. K., Boyd, A. J., Baker, D. N., Erickson, P. J., & Spence, H. E. ( 2015 ). Shockâ induced prompt relativistic electron acceleration in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 120, 1661 â 1674. https://doi.org/10.1002/2014JA020642
dc.identifier.citedreferenceGurnett, D. A., & Bhattacharjee, A. ( 2005 ). Introduction to Plasma Physics. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceHao, Y. X., Zong, Q.â G., Zhou, X.â Z., Rankin, R., Chen, X. R., Liu, Y., et al. ( 2017 ). Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerangâ shaped pitch angle evolutions. Geophysical Research Letters, 44, 7618 â 7627. https://doi.org/10.1002/2017GL074006
dc.identifier.citedreferenceHorne, R. B., Thorne, R. M., Shprits Y. Y., Meredith N. P., Glauert, S. A., Smith, A. J., et al. ( 2005 ). Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437, 227 â 230. https://doi.org/10.1038/nature03939
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1985 ). Resonant ULF wavesâ A new interpretation. Geophysical Research Letters, 12, 49 â 52. https://doi.org/10.1029/GL012i001p00049
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. ( 2013 ). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 179, 127 â 181. https://doi.org/10.1007/s11214-013-9993-6
dc.identifier.citedreferenceLi, W., Thorne, R. M., Ma, Q., Ni, B., Bortnik, J., Baker, D. N., et al. ( 2014 ). Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 119, 4681 â 4693. https://doi.org/10.1002/2014JA019945
dc.identifier.citedreferenceLi, L., Zhou, X. Z., Zong, Q. G., Chen, X. R., Zou, H., Ren, J., et al. ( 2017 ). Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations. Science China Technological Sciences, 30, 1 â 6. https://doi.org/10.1007/s11431-016-0702-4
dc.identifier.citedreferenceLi, L., Zhou, X.â Z., Zong, Q.â G., Rankin, R., Zou, H., Liu, Y., et al. ( 2017 ). Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophysical Research Letters, 44, 5900 â 5908. https://doi.org/10.1002/2017GL073392
dc.identifier.citedreferenceLiu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., et al. ( 2016 ). On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophysical Research Letters, 42, 1023 â 1030. https://doi.org/10.1029/2015GL067398
dc.identifier.citedreferenceMann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J., et al. ( 2013 ). Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts. Nature Communication, 4, 2795. https://doi.org/10.1038/ncomms3795
dc.identifier.citedreferenceMauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. ( 2013 ). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Science Reviews, 179, 3 â 27. https://doi.org/10.1007/s11214-012-9908-y
dc.identifier.citedreferenceNorthrop, T. G. ( 1963 ). Adiabatic chargedâ particle motion. Reviews of Geophysics, 1, 283 â 304. https://doi.org/10.1029/RG001i003p00283
dc.identifier.citedreferenceSchulz, M., & Lanzerotti, L. J. ( 1974 ). Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space (vol.  7, pp. 215 ). New York: Springerâ Verlag.
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ). Some features of field line resonances in the magnetosphere. Planetary and Space Science, 22, 483 â 491. https://doi.org/10.1016/0032-0633(74)90078-6
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1981 ). Charged particle behavior in lowâ frequency geomagnetic pulsations: I. Transverse waves. Journal of Geophysical Research, 86, 5643 â 5655.
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1982 ). Charged particle behavior in lowâ frequency geomagnetic pulsations. IIâ Graphical approach. Journal of Geophysical Research, 87, 1707 â 1710.
dc.identifier.citedreferenceSummers, D., Thorne, R. M., & Xiao, F. ( 1998 ). Relativistic theory of waveâ particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20,487 â 20,500. https://doi.org/10.1029/98JA01740
dc.identifier.citedreferenceTakahashi, K., & McPherron, R. L. ( 1984 ). Standing hydromagnetic oscillations in the magnetosphere. Planetary and Space Science, 32, 1343 â 1359.
dc.identifier.citedreferenceTobita, M., & Omura, Y. ( 2018 ). Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves. Physics of Plasmas, 25 ( 3 ), 032105. https://doi.org/10.1063/1.5018084
dc.identifier.citedreferenceWang, C., Rankin, R., Wang, Y., Zong, Q.â G., Zhou, X.â Z., Takahashi, K., et al. ( 2018 ). Poloidal mode waveâ particle interactions inferred from Van Allen Probes and CARISMA groundâ based observations. Journal of Geophysical Research: Space Physics, 123, 4652 â 4667. https://doi.org/10.1002/2017JA025123
dc.identifier.citedreferenceWygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., et al. ( 2013 ). The electric field and waves instruments on the Radiation Belt Storm Probes mission. Space Science Reviews, 179, 183 â 220. https://doi.org/10.1007/s11214-013-0013-7
dc.identifier.citedreferenceZhou, X.â Z., Wang, Z.â H., Zong, Q.â G., Claudepierre, S. G., Mann, I. R., Kivelson, M. G., et al. ( 2015 ). Imprints of impulseâ excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophysical Research Letters, 42, 6199 â 6204. https://doi.org/10.1002/2015GL064988
dc.identifier.citedreferenceZhou, X.â Z., Wang, Z.â H., Zong, Q.â G., Rankin, R., Kivelson, M. G., Chen, X.â R., et al. ( 2016 ). Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 121, 3254 â 3263. https://doi.org/10.1002/2016JA022447
dc.identifier.citedreferenceZong, Q., Rankin, R., & Zhou, X. ( 2017 ). The interaction of ultraâ lowâ frequency Pc3â 5 waves with charged particles in Earth’s magnetosphere. Reviews of Modern Plasma Physics, 1, 10. https://doi.org/10.1007/s41614-017-0011-4
dc.identifier.citedreferenceZong, Q.â G., Zhou, X.â Z., Li, X., Song, P., Fu, S. Y., Baker, D. N., et al. ( 2007 ). Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophysical Research Letters, 34, L12105. https://doi.org/10.1029/2007GL029915
dc.identifier.citedreferenceZong, Q.â G., Zhou, X.â Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., et al. ( 2009 ). Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. Journal of Geophysical Research, 114, A10204. https://doi.org/10.1029/2009JA014393
dc.identifier.citedreferenceBlake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., et al. ( 2013 ). The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft. Space Science Reviews, 179, 383 â 421. https://doi.org/10.1007/s11214-013-9991-8
dc.identifier.citedreferenceChen, L., & Hasegawa, A. ( 1974 ). A theory of longâ period magnetic pulsations: 1. Steady state excitation of field line resonance. Journal of Geophysical Research, 79, 1024 â 1032. https://doi.org/10.1029/JA079i007p01024
dc.identifier.citedreferenceChen, Y., Reeves, G. D., & Friedel, R. H. W. ( 2007 ). The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Physics, 3, 614 â 617. https://doi.org/10.1038/nphys655
dc.identifier.citedreferenceChen, X.â R., Zong, Q.â G., Zhou, X.â Z., Blake, J. B., Wygant, J. R., & Kletzing, C. A. ( 2016 ). Van allen probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves. Geophysical Research Letters, 44, 1614 â 1624. https://doi.org/10.1002/2016GL071252
dc.identifier.citedreferenceClaudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M. K., Blake, J. B., et al. ( 2013 ). Van Allen Probes observation of localized drift resonance between poloidal mode ultraâ low frequency waves and 60 keV electrons. Geophysical Research Letters, 40, 4491 â 4497. https://doi.org/10.1002/grl.50901
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.