Show simple item record

Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ gene analyses, and a functional model for the origin of monocots

dc.contributor.authorGivnish, Thomas J.
dc.contributor.authorZuluaga, Alejandro
dc.contributor.authorSpalink, Daniel
dc.contributor.authorSoto Gomez, Marybel
dc.contributor.authorLam, Vivienne K. Y.
dc.contributor.authorSaarela, Jeffrey M.
dc.contributor.authorSass, Chodon
dc.contributor.authorIles, William J. D.
dc.contributor.authorDe Sousa, Danilo José Lima
dc.contributor.authorLeebens‐mack, James
dc.contributor.authorChris Pires, J.
dc.contributor.authorZomlefer, Wendy B.
dc.contributor.authorGandolfo, Maria A.
dc.contributor.authorDavis, Jerrold I.
dc.contributor.authorStevenson, Dennis W.
dc.contributor.authordePamphilis, Claude
dc.contributor.authorSpecht, Chelsea D.
dc.contributor.authorGraham, Sean W.
dc.contributor.authorBarrett, Craig F.
dc.contributor.authorAné, Cécile
dc.date.accessioned2018-12-06T17:37:06Z
dc.date.available2020-01-06T16:41:00Zen
dc.date.issued2018-11
dc.identifier.citationGivnish, Thomas J.; Zuluaga, Alejandro; Spalink, Daniel; Soto Gomez, Marybel; Lam, Vivienne K. Y.; Saarela, Jeffrey M.; Sass, Chodon; Iles, William J. D.; De Sousa, Danilo José Lima ; Leebens‐mack, James ; Chris Pires, J.; Zomlefer, Wendy B.; Gandolfo, Maria A.; Davis, Jerrold I.; Stevenson, Dennis W.; dePamphilis, Claude; Specht, Chelsea D.; Graham, Sean W.; Barrett, Craig F.; Ané, Cécile (2018). "Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ gene analyses, and a functional model for the origin of monocots." American Journal of Botany 105(11): 1888-1910.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/146610
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdivergence times
dc.subject.otherZingiberales
dc.subject.othermycoheterotrophy
dc.subject.othermonocotyledons
dc.subject.othermonocot syndrome
dc.subject.othermolecular phylogeny
dc.subject.otherfossil calibration
dc.subject.otherdiversification
dc.subject.otheraquatic origin
dc.subject.otherchloroplast
dc.titleMonocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ gene analyses, and a functional model for the origin of monocots
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/1/ajb21178-sup-0009-AppendixS9.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/2/ajb21178-sup-0020-AppendixS20.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/3/ajb21178.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/4/ajb21178-sup-0019-AppendixS19.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/5/ajb21178-sup-0010-AppendixS10.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/6/ajb21178-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/7/ajb21178-sup-0006-AppendixS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/8/ajb21178-sup-0012-AppendixS12.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/9/ajb21178-sup-0017-AppendixS17.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/10/ajb21178-sup-0007-AppendixS7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/11/ajb21178-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/12/ajb21178-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/13/ajb21178-sup-0016-AppendixS16.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/14/ajb21178_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/15/ajb21178-sup-0008-AppendixS8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/16/ajb21178-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/17/ajb21178-sup-0018-AppendixS18.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/18/ajb21178-sup-0014-AppendixS14.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/19/ajb21178-sup-0011-AppendixS11.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/20/ajb21178-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/21/ajb21178-sup-0015-AppendixS15.pdf
dc.identifier.doi10.1002/ajb2.1178
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceR Core Team 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRoss, T. G., C. F. Barrett, M. S. Gomez, V. K. Y. Lam, C. L. Henriquez, D. H. Les, J. I. Davis, et al. 2016. Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32: 160 â 178.
dc.identifier.citedreferenceRudall, P. J., and J. G. Conran. 2012. Systematic placement of Dasypogonaceae among commelinid monocots: evidence from flowers and fruits. Botanical Review 78: 398 â 415.
dc.identifier.citedreferenceSaarela, J. M. 2006. Molecular systematic studies in commelinid monocots. Ph.D. dissertation, Department of Botany, University of British Columbia.
dc.identifier.citedreferenceSaarela, J. M., S. V. Burke, W. P. Wysocki, M. D. Barrett, L. G. Clark, J. M. Craine, P. M. Peterson, et al. 2018. A 250 plastome phylogeny of the grass family (Poaceae): Topological support for different data partitions. PeerJ 6: e4299.
dc.identifier.citedreferenceSaarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs, and S. W. Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperms. Nature 446: 312 â 315.
dc.identifier.citedreferenceSaarela, J. M., W. P. Wysocki, C. F. Barrett, R. J. Soreng, J. I. Davis, L. G. Clark, S. A. Kelchner, et al. 2015. Plastid phylogenomics of the coolâ season grass subfamily: Clarification of relationships among earlyâ diverging tribes. AoB Plants 7: plv046.
dc.identifier.citedreferenceSass, C., W. J. D. Iles, C. F. Barrett, S. Y. Smith, and C. D. Specht. 2016. Revisiting the Zingiberales: Using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. PeerJ 4: e1584.
dc.identifier.citedreferenceSculthorpe, C. D. 1967. The biology of aquatic vascular plants. Edward Arnold, London, UK.
dc.identifier.citedreferenceSessa, E. B., E. A. Zimmer, and T. J. Givnish. 2012. Unraveling reticulate evolution in North American Dryopteris (Dryopteridaceae). BMC Biology 12: 104.
dc.identifier.citedreferenceSheikh, S. I., T. Kahveci, S. Ranka, and J. G. Burleigh. 2013. Stability analysis of phylogenetic trees. Bioinformatics 29: 166 â 174.
dc.identifier.citedreferenceSheviak, C. J., and M. L. Bowles. 1986. The prairie fringed orchidsâ a pollinatorâ isolated species pair. Rhodora 88: 267 â 290.
dc.identifier.citedreferenceSmith, J. F. 2001. High species diversity in fleshyâ fruited tropical understory plants. American Naturalist 157: 646 â 653.
dc.identifier.citedreferenceSmith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 1 â 13.
dc.identifier.citedreferenceSokoloff, D. D., M. V. Remizowa, B. G. Briggs, and P. J. Rudallm. 2009. Shoot architecture and branching pattern in perennial Hydatellaceae (Nymphaeales). International Journal of Plant Science 170: 869 â 884.
dc.identifier.citedreferenceSokoloff, D. D., M. V. Remizowa, T. D. MacFarlane, R. E. Tuckett, M. M. Ramsay, A. S. Beer, S. R. Yadav, and P. J. Rudall. 2008. Seedling diversity in Hydatellaceae: Implications for the evolution of angiosperm cotyledons. Annals of Botany 101: 153 â 164.
dc.identifier.citedreferenceSoltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulioâ Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 â 730.
dc.identifier.citedreferenceSoltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, et al. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381 â 461.
dc.identifier.citedreferenceSpalink, D., B. T. Drew, M. C. Pace, J. G. Zaborsky, J. R. Starr, K. M. Cameron, T. J. Givnish, et al. 2016. Biogeography of the cosmopolitan sedges (Cyperaceae) and the areaâ richness correlation in plants. Journal of Biogeography 43: 1893 â 1904.
dc.identifier.citedreferenceSpriggs, E. L., P. A. Christin, and E. J. Edwards. 2014. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9: e97722.
dc.identifier.citedreferenceSpriggs, E. L., W. L. Clement, P. W. Sweeney, S. Madriñán, E. J. Edwards, and M. J. Donoghue. 2015. Temperate radiations and dying embers of a tropical past: The diversification of Viburnum. New Phytologist 207: 340 â 354.
dc.identifier.citedreferenceSpringer, M. S., and J. Gatesy. 2018. On the importance of homology in the age of phylogenomics. Systematics and Biodiversity 16: 210 â 228.
dc.identifier.citedreferenceStamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and postâ analysis of large phylogenies. Bioinformatics 30: 1312 â 1313.
dc.identifier.citedreferenceStebbins, G. L. 1974. Flowering plants: Evolution above the species level. Harvard University Press, Cambridge, Massachusetts, USA.
dc.identifier.citedreferenceSteele, R., K. L. Hertweck, D. Mayfield, M. R. McKain, J. Leebensâ Mack, and J. C. Pires. 2012. Quality and quantity of data recovered rom massively parallel sequencing: Examples in Asparagales and Poaceae. American Journal of Botany 99: 330 â 348.
dc.identifier.citedreferenceSwofford, D. L., and C. D. Bell 2017. PAUP* manual. Available at http://phylosolutions.com/paup-documentation/paupmanual.pdf.
dc.identifier.citedreferenceSytsma, K. J., D. Spalink, and B. Berger. 2014. Calibrated chronograms, fossils, outgroup relationships, and root priors: Reâ examining the historical biogeography of Geraniales. Biological Journal of the Linnean Society 113: 29 â 49.
dc.identifier.citedreferenceTakhtajan, A. L. 1969. Flowering plants: Origin and dispersal. Oliver and Boyd, Edinburgh, Scotland.
dc.identifier.citedreferenceTakhtajan, A. L. 1991. Evolutionary trends in flowering plants. Columbia University Press, New York, New York, USA.
dc.identifier.citedreferenceTamura, M. N. 1998. Nartheciaceae. In K. Kubitzki [ed.], The families and genera of vascular plants, vol. 3, 381 â 392. Springer, Berlin, Germany.
dc.identifier.citedreferenceTang, C. Q., C. D. L. Orme, L. Bunnefeld, F. A. Jones, S. Powell, M. W. Chase, T. G. Barraclough, and V. Savolainen. 2017. Global monocot diversification: Geography explains variation in species richness better than environment or biology. Botanical Journal of the Linnean Society 183: 1 â 15.
dc.identifier.citedreferenceTeisher, J. K., M. R. McKain, B. A. Schaal, and E. A. Kellogg. 2017. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn. Annals of Botany 120: 725 â 738.
dc.identifier.citedreferenceTheim, T. J., R. Y. Shirk, and T. J. Givnish. 2014. Spatial genetic structure in four understory Psychotria species and implications for tropical forest diversity. American Journal of Botany 101: 1189 â 1199.
dc.identifier.citedreferenceTownsend, J. 2007. Profiling phylogenetic informativeness. Systematic Biology 56: 222.
dc.identifier.citedreferenceTownsend, J., and C. Leuenberger. 2011. Taxon sampling and optimal rates of evolution for phylogenetic inference. Systematic Biology 60: 358 â 365.
dc.identifier.citedreferenceTremblay, R. L., J. D. Ackerman, J. K. Zimmerman, and R. N. Calvo. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biological Journal of the Linnean Society 84: 1 â 54.
dc.identifier.citedreferenceVan der Niet, T., R. Peakall, and S. D. Johnson. 2014. Pollinatorâ driven ecological speciation in plants: New evidence and future perspectives. Annals of Botany 113: 199 â 211.
dc.identifier.citedreferenceVargas, O. M., E. M. Ortiz, and B. B. Simpson. 2017. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent highâ Andean diversification (Asteraceae: Astereae: Diplostephium ). New Phytologist 214: 1736 â 1750.
dc.identifier.citedreferenceVieira, L. N., K. G. dos Anos, H. Faoro, H. P. de Freitas Fraga, T. M. Greco, F. de Oliveira Pedrosa, E. M. de Souza, et al. 2016. Phylogenetic inference and SSR characterization of tropical bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Current Genetics 62: 443 â 453.
dc.identifier.citedreferenceWickett, N. J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA 111: 4859 â 4868.
dc.identifier.citedreferenceWillyard, A., R. Cronn, and A. Liston. 2009. Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution 52: 498 â 511.
dc.identifier.citedreferenceWu, Z. Q., and S. Ge. 2012. The phylogeny of the BEP clade in grasses revisited: Evidence from the wholeâ genome sequences of chloroplasts. Molecular Phylogenetics and Evolution 62: 573 â 578.
dc.identifier.citedreferenceWysocki, W. P., S. V. Burke, W. D. Swingley, and M. R. Duvall 2016. The first complete plastid genome from Joinvilleaceae ( J. ascendens; Poales) shows unique and unpredicted rearrangements. PLoS ONE 11: e0163218.
dc.identifier.citedreferenceWysocki, W. P., L. G. Clark, L. Attigala, E. Ruizâ Sanchez, and M. R. Duvall. 2015. Evolution of the bamboos (Bambusoideae; Poaceae): A full plastome phylogenomic analysis. BMC Evolutionary Biology 15: 50.
dc.identifier.citedreferenceZimmer, E. A., and J. Wen. 2015. Using nuclear gene data for plant phylogenetics: Progress and prospects II. Nextâ gen approaches. Journal of Systematics and Evolution 53: S371 â S379.
dc.identifier.citedreferenceAngiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 â 121.
dc.identifier.citedreferenceAngiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 â 20.
dc.identifier.citedreferenceArber, A. 1925. Monocotyledons: A morphological study. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceAttigala, L., W. P. Wysocki, M. R. Duvall, and L. G. Clark. 2016. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Molecular Phylogenetics and Evolution 101: 111 â 121.
dc.identifier.citedreferenceBarkman, T. J., J. R. McNeal, S. H. Lim, G. Coat, H. B. Croom, N. D. Young, and C. W. dePamphilis. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7: 248.
dc.identifier.citedreferenceBarrett, C. F., J. Comer, J. Leebensâ Mack, J. Li, D. R. Mayfieldâ Jones, J. R. Medina, L. Perez, et al. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytologist 209: 855 â 870.
dc.identifier.citedreferenceBarrett, C. F., J. I. Davis, J. Leebensâ Mack, J. G. Conran, and D. W. Stevenson. 2013. Plastid genomes and deep support among the commelinid monocot angiosperms. Cladistics 29: 65 â 87.
dc.identifier.citedreferenceBarrett, C. F., J. V. Freudenstein, J. Li, D. R. Mayfieldâ Jones, L. Perez, J. C. Pires, and C. Santos. 2014a. Investigating the path of plastid genome degradation in an earlyâ transitional clade of mycoheterotrophic orchids, and implications for heterotrophic angiosperms. Molecular Biology and Evolution 31: 3095 â 3112.
dc.identifier.citedreferenceBarrett, C. F., C. D. Specht, J. Leebensâ Mack, D. W. Stevenson, W. B. Zomlefer, and J. I. Davis. 2014b. Resolving ancient radiations: Can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales Griseb.)? Annals of Botany 113: 119 â 133.
dc.identifier.citedreferenceBouchenakâ Khelladi, Y., A. M. Muasya, and H. P. Linder. 2014. A revised evolutionary history of Poales: orIgins and diversification. Botanical Journal of the Linnean Society 175: 4 â 16.
dc.identifier.citedreferenceBouckaert, R. R., J. Heled, D. Kuehnert, T. G. Vaughan, C.â H. Wu, D. Xie, M. A. Suchard, et al. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.
dc.identifier.citedreferenceBoston, H. L. 1986. A discussion of the adaptation for carbon acquisition in relation to the growth strategy of aquatic isoetids. Aquatic Botany 26: 259 â 270.
dc.identifier.citedreferenceBoyce, P. C., and T. B. Croat 2018. The à berlist of Araceae, totals for published and estimated number of species in aroid genera. http://www.aroid.org/genera/180211uberlist.pdf.
dc.identifier.citedreferenceBriggs, B. G., A. D. Marchant, and A. J. Perkins. 2014. Phylogeny of the restiid clade (Poales) and implications for the classification of Anarthriaceae, Centrolepidaceae and Australian Restionaceae. Taxon 63: 24 â 46.
dc.identifier.citedreferenceBromham, L., P. F. Cowman, and R. Lanfear. 2013. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evolutionary Biology 13: 126.
dc.identifier.citedreferenceBurke, S. V., L. G. Clark, J. K. Triplett, C. P. Grennan, and M. R. Duvall. 2014. Biogeography and phylogenomics of New World Bambusoideae (Poaceae), revisited. American Journal of Botany 101: 886 â 891.
dc.identifier.citedreferenceBurke, S. V., C. P. Grennan, and M. R. Duvall. 2012. Plastome sequences of two New World bamboosâ Arundinaria gigantea and Cryptochloa strictiflora (Poaceae)â extend phylogenomic understanding of Bambusoideae. American Journal of Botany 99: 1951 â 1961.
dc.identifier.citedreferenceBurke, S. V., C. S. Lin, W. P. Wysocki, L. G. Clark, and M. R. Duvall. 2016a. Phylogenomics and plastome evolution of tropical forest grasses ( Leptapsis, Streptochaeta: Poaceae). Frontiers in Plant Science 7: 1993.
dc.identifier.citedreferenceBurke, S. V., W. P. Wysocki, F. O. Zuloaga, J. M. Craine, J. C. Pires, P. P. Edger, D. Mayfieldâ Jones, et al. 2016b. Evolutionary relationships in panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biology 16: 140.
dc.identifier.citedreferenceCabrera, L. I., G. A. Salazar, M. W. Chase, S. J. Mayo, J. Bogner, and P. Davila. 2008. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. American Journal of Botany 95: 1153 â 1165.
dc.identifier.citedreferenceCardillo, M., P. H. Weston, Z. K. M. Reynolds, P. M. Olde, A. R. Mast, E. M. Lemmon, A. R. Lemmon, and L. Bromham. 2017. The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation. Evolution 71: 1928 â 1943.
dc.identifier.citedreferenceCarlsen, M. M., T. Fér, R. Schmickl, J. Leongâ Å korniÄ ková, M. Newman, and W. J. Kress. 2018. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales: pushing the limits of genomic data. Molecular Phylogenetics and Evolution 128: 55 â 68.
dc.identifier.citedreferenceChase, M. W. 2004. Monocot relationships: an overview. American Journal of Botany 91: 1645 â 1655.
dc.identifier.citedreferenceChase, M. W., K. M. Cameron, R. L. Barrett, and J. V. Freudenstein. 2003. DNA data and Orchidaceae systematics: A new phylogenetic classification. In K. W. Dixon, S. P. Kell, R. L. Barrett, and P. J. Cribb [eds.], Orchid conservation, 69 â 89. Natural History Publications, Kota Kinabalu, Malaysia.
dc.identifier.citedreferenceChase, M. W., M. F. Fay, D. S. Devey, O. Maurin, N. Rønsted, T. J. Davies, Y. Pillon, et al. 2006. Multigene analyses of monocot relationships: A summary. Aliso 22: 63 â 75.
dc.identifier.citedreferenceChase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, et al. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528 â 580.
dc.identifier.citedreferenceChase, M. W., P. S. Soltis, P. J. Rudall, M. F. Fay, W. H. Hahn, S. Sullivan, J. Joseph, et al. 2000. Higherâ level systematics of the monocotyledons: An assessment of current knowledge and a new classification. In K. L. Wilson and D. A. Morrison [eds.], Monocots: systematics and evolution, 3 â 16. CSIRO, Collingwood, Australia.
dc.identifier.citedreferenceChen, L. Y., G. W. Grimm, Q. F. Wang, and S. S. Renner. 2015. A phylogeny and biogeographic analysis for the Capeâ pondweed family Aponogetonaceae (Alismatales). Molecular Phylogenetics and Evolution 82: 111 â 117.
dc.identifier.citedreferenceComer, J. R., W. B. Zomlefer, C. F. Barrett, J. I. Davis, D. W. Stevenson, K. Heyduk, and J. H. Leebensâ Mack. 2015. Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from nextâ generation sequencing. American Journal of Botany 102: 888 â 899.
dc.identifier.citedreferenceCotton, J. L., W. P. Wysocki, L. G. Clark, S. A. Kelchner, J. C. Pires, P. P. Edger, D. Mayfieldâ Jones, and M. R. Duvall. 2015. Resolving deep relationships of PACMAD grasses: A phylogenomic approach. BMC Plant Biology 15: 178.
dc.identifier.citedreferenceCronquist, A. 1968. The evolution and classification of flowering plants. Nelson, London, UK.
dc.identifier.citedreferenceCronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, New York, USA.
dc.identifier.citedreferenceDahlgren, R. M. T., H. T. Clifford, and P. F. Yeo. 1985. The families of the monocotyledons: structure, evolution, and taxonomy. Springer Verlag, Berlin, Germany.
dc.identifier.citedreferenceDarriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772 â 772.
dc.identifier.citedreferenceDarwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, UK.
dc.identifier.citedreferenceDavis, C. C., and Z. Xi. 2015. Horizontal gene transfer in parasitic plants. Current Opinion in Plant Biology 26: 14 â 19.
dc.identifier.citedreferenceDoyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11 â 15.
dc.identifier.citedreferenceDressler, R. L. 1973. Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceDrew, B. T., B. R. Ruhfel, S. A. Smith, M. J. Moore, B. G. Briggs, M. A. Gitzendanner, P. S. Soltis, and D. E. Soltis. 2014. Another look at the root of the angiosperms reveals a familiar tale. Systematic Biology 63: 368 â 382.
dc.identifier.citedreferenceDu, Z. Y., Q. F. Wang, and China Phylogeny Consortium. 2016. Phylogenetic tree of vascular plants revelas the origins of aquatic angiosperms. Journal of Systematics and Evolution 54: 342 â 348.
dc.identifier.citedreferenceDuvall, M. R., M. T. Clegg, M. W. Chase, W. D. Clark, W. J. Kress, H. G. Hills, L. E. Eguiarte, et al. 1993a. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Annals of the Missouri Botanical Garden 80: 607 â 619.
dc.identifier.citedreferenceDuvall, M. R., A. E. Fisher, J. T. Columbus, A. L. Ingraham, W. P. Wysocki, S. V. Burke, L. G. Clark, and S. A. Kelchner. 2016. Phylogenomics and plastome evolution of the chloridoid grasses (Chloridoideae: Poaceae). International Journal of Plant Science 177: 235 â 246.
dc.identifier.citedreferenceDuvall, M. R., G. H. Learn, Jr., L. E. Eguiarte, and M. T. Clegg 1993b. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proceedings of the National Academy of Sciences USA 90: 4641 â 4644.
dc.identifier.citedreferenceEdgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792 â 1797.
dc.identifier.citedreferenceFragman, O., and A. Schmida. 1997. Diversity and adaptation of wild geophytes along an aridity gradient in Israel. Acta Horticulturae 430: 795 â 802.
dc.identifier.citedreferenceFuse, S., and M. N. Tamura. 2000. A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biology 2: 415 â 427.
dc.identifier.citedreferenceGarcía, M. A., M. Costea, M. Kuzmina, and S. Stefanovic. 2014. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. American Journal of Botany 101: 670 â 690.
dc.identifier.citedreferenceGivnish, T. J. 1979. On the adaptive significance of leaf form. In O. T. Solbrig, S. Jain, G. B. Johnson, and P. H. Raven [eds.], Topics in plant population biology, 375 â 407. Columbia University Press, New York, New York, USA.
dc.identifier.citedreferenceGivnish, T. J. 1984. Leaf and canopy adaptations in tropical forests. In E. Medina, H. A. Mooney, and C. Vásquezâ Yánes [eds.], Physiological ecology of plants of the wet tropics, 51 â 84. Dr. Junk, The Hague.
dc.identifier.citedreferenceGivnish, T. J. 1995. Plant stems: Biomechanical adaptations for energy capture and influence on species distributions. In B. L. Gartner [ed.], Plant stems: Physiology and functional morphology, 3 â 49. Chapman and Hall, New York, New York, USA.
dc.identifier.citedreferenceGivnish, T. J. 1998. Adaptive radiation of plants on oceanic islands: Classical patterns, molecular data, new insights. In P. Grant [ed.], Evolution on islands, 281 â 304. Oxford University Press, New York, New York, USA.
dc.identifier.citedreferenceGivnish, T. J. 2010. Ecology of plant speciation. Taxon 59: 1326 â 1366.
dc.identifier.citedreferenceGivnish, T. J., M. Ames, J. R. McNeal, P. R. Steele, C. W. dePamphilis, S. W. Graham, J. C. Pires, et al. 2010. Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden 97: 584 â 616.
dc.identifier.citedreferenceGivnish, T. J., M. H. J. Barfuss, B. Van Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, et al. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an 8â locus plastid phylogeny. American Journal of Botany 98: 872 â 895.
dc.identifier.citedreferenceGivnish, T. J., T. M. Evans, J. C. Pires, and K. J. Sytsma. 1999. Polyphyly and convergent evolution in Commelinales and Commelinidae: Evidence from rbcL sequence data. Molecular Phylogenetics and Evolution 12: 360 â 385.
dc.identifier.citedreferenceGivnish, T. J., K. C. Millam, T. T. Theim, A. R. Mast, T. B. Patterson, A. L. Hipp, J. M. Henss, et al. 2009. Origin, adaptive radiation, and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society of London B 276: 407 â 416.
dc.identifier.citedreferenceGivnish, T. J., J. C. Pires, S. W. Graham, M. A. McPherson, T. B. Patterson, H. S. Rai, T. M. Evans, et al. 2005. Repeated evolution of net venation and fleshy fruits among monocots in shady habitats confirms a priori predictions: Evidence from an ndhF phylogeny. Proceedings of the Royal Society B 272: 1481 â 1490.
dc.identifier.citedreferenceGivnish, T. J., D. Spalink, M. Ames, S. P. Lyon, S. J. Hunter, A. Zuluaga, M. A. Clements, et al. 2015. Orchid phylogenomics and multiple drivers of extraordinary diversification. Proceedings of the Royal Society of London B 282: 20151553.
dc.identifier.citedreferenceGivnish, T. J., D. Spalink, M. Ames, S. P. Lyon, S. J. Hunter, A. Zuluaga, M. A. Clements, et al. 2016a. Orchid historical biogeography, diversification, Antarctica, and the paradox of orchid dispersal. Journal of Biogeography 43: 1905 â 1916.
dc.identifier.citedreferenceGivnish, T. J., and K. J. Sytsma. 1997. Consistency, characters, and the likelihood of correct phylogenetic inference. Molecular Phylogenetics and Evolution 7: 320 â 330.
dc.identifier.citedreferenceGivnish, T. J., K. J. Sytsma, J. F. Smith, and W. S. Hahn. 1995. Molecular evolution, adaptive radiation, and geographic speciation in Cyanea (Campanulaceae, Lobelioideae). In W. L. Wagner and V. Funk [eds.], Hawaiian biogeography: Evolution on a hot spot archipelago, 288 â 337. Smithsonian Institution Press, Washington, D.C., USA.
dc.identifier.citedreferenceGivnish, T. J., A. Zuluaga, V. K. Y. Lam, M. S. Gomez, W. J. D. Iles, D. Spalink, J. R. Moeller, et al. 2016b. Plastome phylogeny and historical biogeography of the monocot order Liliales: Out of Australia and through Antarctica. Cladistics 32: 581 â 605.
dc.identifier.citedreferenceGötmark, F., E. Götmark, and A. M. Jensen. 2016. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Frontiers in Plant Science 7: 1095.
dc.identifier.citedreferenceGraham, S. W., J. M. Zgurski, M. A. McPherson, D. M. Cherniawsky, J. M. Saarela, E. F. C. Horne, S. Y. Smith, et al. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. Aliso 22: 3 â 21.
dc.identifier.citedreferenceGrass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist 193: 304 â 312.
dc.identifier.citedreferenceGrover, C. E., A. Salmon, and J. F. Wendel. 2012. Targeted sequence capture as a powerful tool for evolutionary analysis. American Journal of Botany 99: 312 â 319.
dc.identifier.citedreferenceHallier, H. 1905. Provisional scheme of the natural (phylogenetic) system of flowering plants. New Phytologist 4: 151 â 162.
dc.identifier.citedreferenceHenriquez, C. L., T. Arias, J. C. Pires, T. B. Croat, and B. A. Schaal. 2014. Phylogenomics of the plant family Araceae. Molecular Phylogenetics and Evolution 75: 91 â 102.
dc.identifier.citedreferenceHenslow, G. 1893. A theoretical origin of endogens from exogens through selfâ adaptation to an aquatic habit. Botanical Journal of the Linnean Society 29: 485 â 528.
dc.identifier.citedreferenceHenslow, G. 1911. The origin of monocotyledons from dicotyledons through selfâ adaptation to a moist or aquatic habit. Annals of Botany 26: 717 â 744.
dc.identifier.citedreferenceLinder, H. P., and L. H. Rieseberg. 2004. Reconstructing patterns of reticulate evolution in plans. American Journal of Botany 91: 1700 â 1708.
dc.identifier.citedreferenceHuang, Y. L., X. J. Li, Z. Y. Yang, C. J. Yang, J. B. Yang, and Y. H. Ji. 2016. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Frontiers in Plant Science 7: 1797.
dc.identifier.citedreferenceIles, W. J. D., S. Y. Smith, M. A. Gandolfo, and S. W. Graham. 2015. Monocot fossils suitable for molecular dating analyses. Botanical Journal of the Linnean Society 178: 364 â 374.
dc.identifier.citedreferenceImhoff, S. 2010. Are monocots particularly suited to develop mycoheterotrophy? In O. Seberg, G. Petersen, A. Barfod, and J. I. Davis [eds.], Diversity, phylogeny, and evolution in the monocotyledons, 11 â 23. Aarhus University Press, Aarhus, Denmark.
dc.identifier.citedreferenceJohansen, L. B. 2005. Phylogeny of Orchidantha (Lowiaceae) and the Zingiberales based on six DNA regions. Systematic Botany 30: 106 â 117.
dc.identifier.citedreferenceJohnson, S. D., H. P. Linder, and K. E. Steiner. 1998. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). American Journal of Botany 85: 402 â 411.
dc.identifier.citedreferenceJones, S. S., S. V. Burke, and M. R. Duvall. 2014. Phylogenomics, molecular evolution, and estimated ages of lineages from the deep phylogeny of Poaceae. Plant Systematics and Evolution 300: 1421 â 1436.
dc.identifier.citedreferenceKatoh, S., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772 â 780.
dc.identifier.citedreferenceKearse, M., R. Moir, A. Wilson, S. Stonesâ Havas, M. Cheung, S. Sturrock, S. Buxton, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647 â 1649.
dc.identifier.citedreferenceKeeley, J. E. 1999. Photosynthetic pathway diversity in a seasonal pool community. Functional Ecology 13: 106 â 118.
dc.identifier.citedreferenceKim, J. H., S. I. Lee, B. R. Kim, I. Y. Choi, P. Ryser, and N. S. Kim 2017. Chloroplast genomes of Lilium lancifoliu, L. amabile, L. callosum, and L. philadelphicum: Molecular characterization and their use in phylogenetic analysis in the genus Lilium and other allied genera in the order Liliales. PLoS ONE 12: e0186788.
dc.identifier.citedreferenceKlopfstein, S., C. Kropf, and D. Quicke. 2010. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). Systematic Biology 59: 226 â 241.
dc.identifier.citedreferenceKlopfstein, S., T. Massingham, and N. Goldman. 2017. More on the best evolutionary rate for phylogenetic analysis. Systematic Biology 66: 769 â 785.
dc.identifier.citedreferenceKress, W. J. 1990. The phylogeny and classification of the Zingiberales. Annals of the Missouri Botanical Garden 77: 698 â 721.
dc.identifier.citedreferenceKress, W. J., L. M. Prince, W. J. Hahn, and E. A. Zimmer. 2001. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Systematic Biology 50: 926 â 944.
dc.identifier.citedreferenceLagomarsino, L. P., F. L. Condamine, A. Antonelli, A. Mulch, and C. C. Davis. 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist 210: 1430 â 1442.
dc.identifier.citedreferenceLam, V. K. Y., H. Darby, V. S. F. T. Merckx, G. Lim, T. Yukawa, K. N. Neubig, J. R. Abbott, et al. 2018. Phylogenomic inference in extremis: A case study with mycoheterotroph plastomes. American Journal of Botany 105: 480 â 494.
dc.identifier.citedreferenceLam, V. K. Y., M. S. Gomez, and S. W. Graham. 2015. The highly reduced plastome of mycoheterotrophic Sciaphila (Triuridaceae) is collinear with its green relatives and is under strong purifying selection. Genome Biology and Evolution 7: 2220 â 2236.
dc.identifier.citedreferenceLam, V. K. Y., V. S. F. T. Merckx, and S. W. Graham. 2016. A fewâ gene plastid phylogenetic framework for mycoheterotrophic monocots. American Journal of Botany 103: 692 â 708.
dc.identifier.citedreferenceLanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott. 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772 â 773.
dc.identifier.citedreferenceLemaire, B., S. Huysmans, E. Smets, and V. Merckx. 2011. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. Journal of Plant Research 124: 561 â 576.
dc.identifier.citedreferenceLemmon, A. R., S. A. Emme, and E. M. Lemmon. 2012. Anchored hybrid enrichment for massively highâ throughput phylogenomics. Systematic Biology 61: 727 â 744.
dc.identifier.citedreferenceLes, D. H., and E. L. Schneider. 1995. The Nymphaeales, Alismatidae, and the theory of an aquatic monocotyledon origin. In P. J. Rudall, P. J. Cribb, D. F. Cutler, and C. J. Humphries [eds.], Monocotyledons: Systematics and evolution, 23 â 42. Royal Botanic Gardens, Kew, UK.
dc.identifier.citedreferenceLeveilleâ Bouret, E., J. R. Starr, B. A. Ford, E. M. Lemmon, and A. R. Lemmon. 2018. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Systematic Biology 67: 94 â 112.
dc.identifier.citedreferenceLim, G. S., C. F. Barrett, C. C. Pang, and J. I. Davis. 2016. Drastic reduction of plastome size in mycoheterotrophic Thismia tentaculata relative to that of its autotrophic relative Tacca chantrieri. American Journal of Botany 103: 1129 â 1137.
dc.identifier.citedreferenceLinder, H. P., C. E. R. Lehmann, S. Archibald, C. P. Osborne, and D. M. Richardson. 2017. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews 93: 1125 â 1144.
dc.identifier.citedreferenceLogacheva, M. D., M. I. Schelkunov, M. S. Nuraliev, T. H. Samigullin, and A. A. Penin. 2014. The plastid genome of mycoheterotrophic monocot Petrosavia stellaris exhibits both gene losses and multiple rearrangements. Genome Biology and Evolution 6: 238 â 246.
dc.identifier.citedreferenceLossâ Oliveira, L., C. Sakuragui, M. de Lourdes Soares, and C. G. Schrago. 2016. Evolution of Philodendron (Araceae) species in Neotropical biomes. PeerJ 4: e1744.
dc.identifier.citedreferenceLughadha, E. N., R. Govaerts, I. Belyaeva, N. Black, H. Lindon, R. Allkin, R. E. Magill, and N. Nicolson. 2016. Counting counts: revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa 272: 82 â 88.
dc.identifier.citedreferenceMagallón, S., S. Gómezâ Acevedo, L. L. Sánchezâ Reyes, and T. Hernándezâ Hernández. 2015. A metacalibrated timeâ tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437 â 453.
dc.identifier.citedreferenceMagallón, S., L. L. Sánchezâ Reyes, and S. L. Gómezâ Acevodo 2018. Thirty clues to the exceptional diversification of flowering plants. bioRxiv preprint, https://doi.org/10.1101/279620.
dc.identifier.citedreferenceMarques, I., J. F. Aguilar, M. A. Martinsâ Louçao, F. Moharrek, and G. N. Feliner. 2017. A threeâ genome fiveâ gene comprehensive phylogeny of the bulbous genus Narcissus (Amaryllidaceae) challenges current classifications and reveals multiple hybridization events. Taxon 66: 832 â 854.
dc.identifier.citedreferenceMennes, C. B., V. K. Y. Lam, P. J. Rudall, S. P. Lyon, S. W. Graham, E. F. Smets, and V. S. F. T. Merckx. 2015. Ancient Gondwana breakâ up explains the distribution of the mycoheterotrophic family Corsiaceae (Liliales). Journal of Biogeography 42: 1123 â 1136.
dc.identifier.citedreferenceMerckx, V. S. F. T., F. T. Bakker, S. Huysmans, and E. F. Smets. 2009. Bias and conflict in phylogenetic inference of mycoâ heterotrophic plants: A case study in Thismiaceae. Cladistics 25: 64 â 77.
dc.identifier.citedreferenceMerckx, V. S. F. T., J. V. Freudenstein, J. Kissling, M. J. M. Christenhusz, R. E. Stotler, B. Crandallâ Stotler, N. Wickett, et al. 2013. Taxonomy and classification. In V. Merckx [ed.], Mycoheterotrophy: the biology of plants living on fungi, 19 â 101. Springerâ Verlag, New York, New York, USA.
dc.identifier.citedreferenceMerckx, V. S. F. T., S. Huysmans, and E. F. Smets. 2010. Cretaceous origins of mycoheterotrophic lineages in Dioscoreales. In O. Seberg, G. Petersen, A. S. Barfod, and J. I. Davis [eds.], Diversity, phylogeny and evolution in the monocotyledons, 39 â 53. Aarhus University Press, Aarhus, Denmark.
dc.identifier.citedreferenceMerckx, V. [S. F. T.], P. Schols, H. Maasâ van der Kamer, P. Maas, S. Huysmans, and E. Smets 2006. Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. American Journal of Botany 93: 1684 â 1698.
dc.identifier.citedreferenceMerckx, V. S. F. T., and E. F. Smets. 2014. Thismia americana, the 101st anniversary of a botanical mystery. International Journal of Plant Sciences 175: S165 â S175.
dc.identifier.citedreferenceMiller, M. A., W. Pfeiffer, and T. Schwartz 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1 â 8.
dc.identifier.citedreferenceMorris, J. L., M. N. Puttick, J. W. Clark, D. Edwards, P. Kenrick, S. Pressel, C. H. Wellman, et al. 2018. The timescale of early plant evolution. Proceedings of the National Academy of Sciences USA 115: E2274 â E2283.
dc.identifier.citedreferenceNauheimer, L., D. Metzler, and S. S. Renner. 2012. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist 195: 938 â 950.
dc.identifier.citedreferenceNickrent, D. L., A. Blarer, Y. L. Qiu, D. E. Soltis, P. S. Soltis, and M. Zanis. 2002. Molecular data place Hydnoraceae with Aristolochiaceae. American Journal of Botany 89: 1809 â 1817.
dc.identifier.citedreferenceNickrent, D. L., A. Blarer, Y. L. Qiu, R. Vidalâ Russell, and F. E. Anderson. 2004. Phylogenetic inference in Rafflesiales: The influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology 4: 40.
dc.identifier.citedreferenceNickrent, D. L., R. J. Duff, A. E. Colwell, A. D. Wolfe, N. D. Young, K. E. Steiner, and C. W. dePamphilis. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. In D. E. Soltis, P. S. Soltis, and J. J. Doyle [eds.], Molecular systematics of plants II: DNA sequencing, 211 â 241. Kluwer Academic Press, Boston, Massachusetts, USA.
dc.identifier.citedreferenceNickrent, D. L., and E. M. Starr. 1994. High rates of nucleotide substitution in nuclear small subunit (18S) rDNA from holoparasitic flowering plants. Journal of Molecular Evolution 39: 62 â 70.
dc.identifier.citedreferenceNoyâ Meir, I., and T. Oron. 2001. Effects of grazing on geophytes in Mediterranean vegetation. Journal of Vegetation Science 12: 749 â 760.
dc.identifier.citedreferenceParadis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289 â 290.
dc.identifier.citedreferencePenny, D., L. R. Foulds, and M. D. Hendy. 1982. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297: 197 â 200.
dc.identifier.citedreferencePetersen, G., O. Seberg, J. I. Davis, D. H. Goldman, D. W. Stevenson, L. M. Campbell, F. A. Michelangeli, C. D. Specht, et al. 2006. Mitochondrial data in monocot systematics. Aliso 22: 52 â 62.
dc.identifier.citedreferencePlummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6: 7 â 11.
dc.identifier.citedreferencePrice, J. P., and W. L. Wagner. 2004. Speciation in Hawaiian angiosperm lineages: Cause, consequence, and mode. Evolution 58: 2185 â 2200.
dc.identifier.citedreferenceRabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversityâ dependence on phylogenetic trees. PLoS ONE 9: e89543.
dc.identifier.citedreferenceRabosky, D. L., M. C. Grundler, C. J. Anderson, P. O. Title, J. J. Shi, J. W. Brown, H. Huang, and J. G. Larson. 2014. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution 5: 701 â 707.
dc.identifier.citedreferenceRambaut, A., and A. J. Drummond. 2009. Tracer 1.5. Available at https://github.com/evolvedmicrobe/beast-mcmc/tree/master/release_tracer/Windows/Tracer%20v1.5.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.