Show simple item record

Vegetation connectivity increases ant activity and potential for antâ provided biocontrol services in a tropical agroforest

dc.contributor.authorJimenez‐soto, Estelí
dc.contributor.authorMorris, Jonathan R.
dc.contributor.authorLetourneau, Deborah K.
dc.contributor.authorPhilpott, Stacy M.
dc.date.accessioned2019-02-12T20:24:46Z
dc.date.available2020-03-03T21:29:36Zen
dc.date.issued2019-01
dc.identifier.citationJimenez‐soto, Estelí ; Morris, Jonathan R.; Letourneau, Deborah K.; Philpott, Stacy M. (2019). "Vegetation connectivity increases ant activity and potential for antâ provided biocontrol services in a tropical agroforest." Biotropica 51(1): 50-61.
dc.identifier.issn0006-3606
dc.identifier.issn1744-7429
dc.identifier.urihttps://hdl.handle.net/2027.42/147848
dc.description.abstractIn natural and managed systems, connections between trees are important structural resources for arboreal ant communities with ecosystemâ level effects. However, ongoing agricultural intensification in agroforestry systems, which reduces shade trees and connectivity between trees and crop plants, may hinder ant recruitment rates to resources and pest control services provided by ants. We examined whether increasing connectivity between coffee plants and shade trees in coffee plantations increases ant activity and enhances biological control of the coffee berry borer, the most devastating insect pest of coffee. Further, we examined whether artificial connections buffer against the loss of vegetation connectivity in coffee plants located at larger distances from the nesting tree. We used string to connect Inga micheliana shade trees containing Azteca sericeasur ant nests to coffee plants to compare ant activity before and after placement of the strings, and measured borer removal by ants on coffee plants with and without strings. Ant activity significantly increased after the addition of strings on connected plants, but not on control plants. Borer removal by ants was also three times higher on connected plants after string placement. Greater distance from the nesting tree negatively influenced ant activity on control coffee plants, but not on connected plants, suggesting that connections between coffee plants and nest trees could potentially compensate for the negative effects that larger distances pose on ant activity. Our study shows that favoring connectivity at the local scale, by artificially adding connections, promotes ant activity and may increase pest removal in agroecosystems.Abstract in Spanish is available with online material.ResumenEn sistemas naturales y agroecosistemas, las conexiones en la vegetación son recursos estructurales importantes para las comunidades de hormigas arbóreas, e influyen en procesos a nivel ecosistema. Sin embargo, la perdida de la complejidad de la vegetación en los sistemas agroforestales, la cual reduce conectividad entre arboles de sombra y el cultivo, puede impactar negativamente las tasas de reclutamiento de hormigas y reducir el control biológico. Examinamos el efecto del aumento de la conectividad entre plantas de café y árboles de sombra en la actividad de las hormigas y el control biológico de la broca del café. Evaluamos si las conexiones artificiales amortiguan contra la pérdida de conectividad de la vegetación en plantas de café situadas a mayores distancias del árbol de anidación. Utilizamos cuerdas de yute para crear conexiones entre árboles de sombra con nidos de Azteca sericeasur, y arbustos de café. Comparamos la actividad de hormigas y la remoción de broca antes y después de la colocación de las cuerdas, en arbustos de café con y sin cuerdas. La actividad de hormigas aumentó después de la colocación de cuerdas en las plantas conectadas, y la eliminación de broca fue tres veces mayor en las plantas conectadas. La distancia al árbol de anidación influyó negativamente en la actividad de las hormigas en las plantas control. Las conexiones entre las plantas de café y los árboles podrían anular los efectos negativos que las distancias más grandes suponen para la actividad de las hormigas. Nuestro estudio muestra que la conectividad de la vegetación a escala local, promueve la actividad de las hormigas y puede incrementar la remoción de plagas en agroecosistemas.
dc.publisherJohn Wiley & Sons
dc.subject.otherAzteca ants
dc.subject.otherbiological control
dc.subject.othercoffee berry borer
dc.subject.otherant foraging
dc.subject.othervegetation connectivity
dc.subject.otherforaging behavior
dc.titleVegetation connectivity increases ant activity and potential for antâ provided biocontrol services in a tropical agroforest
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147848/1/btp12616.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147848/2/btp12616_am.pdf
dc.identifier.doi10.1111/btp.12616
dc.identifier.sourceBiotropica
dc.identifier.citedreferencePolis, G. A., & Strong, D. R. ( 1996 ). Food web complexity and community dynamics. American Naturalist, 147, 813 â 846. https://doi.org/10.1086/285880
dc.identifier.citedreferencePhilpott, S. M., Perfecto, I., Vandermeer, J., & Uno, S. ( 2009 ). Spatial scale and density dependence in a host parasitoid system: An arboreal ant, Azteca instabilis, and its Pseudacteon phorid parasitoid. Environmental Entomology, 38, 790 â 796. https://doi.org/10.1603/022.038.0331
dc.identifier.citedreferencePowell, S., Costa, A. N., Lopes, C. T., and Vasconcelos, H. L. ( 2011 ). Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. Journal of Animal Ecology, 80, 352 â 360.
dc.identifier.citedreferenceR Core Team ( 2014 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/; http://CRAN.R-project.org/package=lme4
dc.identifier.citedreferenceRisch, S., McClure, M., Vandermeer, J., & Waltz, S. ( 1977 ). Mutualism between three species of tropical Piper (Piperaceae) and their ant inhabitants. American Midland Naturalist, 98, 433 â 444.
dc.identifier.citedreferenceRiveraâ Salinas, I. S., Hajianâ Forooshani, Z., Jiménezâ Soto, E., Cruzâ Rodríguez, J. A., & Philpott, S. M. ( 2018 ). High intermediary mutualist density provides consistent biological control in a tripartite mutualism. Biological Control, 118, 26 â 31. https://doi.org/10.1016/j.biocontrol.2017.12.002
dc.identifier.citedreferenceRoth, D. S., Perfecto, I., & Rathcke, B. ( 1994 ). The effects of management systems on groundâ foraging ant diversity in Costa Rica. Ecological Applications, 4, 423 â 436. https://doi.org/10.2307/1941947
dc.identifier.citedreferenceSanders, D., Nickel, H., Grützner, T., & Platner, C. ( 2008 ). Habitat structure mediates topâ down effects of spiders and ants on herbivores. Basic and Applied Ecology, 9, 152 â 160. https://doi.org/10.1016/j.baae.2007.01.003
dc.identifier.citedreferenceTanaka, H. O., Yamane, S., & Itioka, T. ( 2010 ). Withinâ tree distribution of nest sites and foraging areas of ants on canopy trees in a tropical rainforest in Borneo. Population Ecology, 52, 147. https://doi.org/10.1007/s10144-009-0172-2
dc.identifier.citedreferenceTeodoro, A., Sousaâ Souto, L., Klein, A.â M., & Tscharntke, T. ( 2010 ). Seasonal contrasts in the response of coffee ants to agroforestry shadeâ tree management. Environmental Entomology, 39, 1744 â 1750. https://doi.org/10.1603/EN10092
dc.identifier.citedreferenceTorresâ Contreras, H., & Vasquez, R. ( 2004 ). A field experiment on the influence of load transportation and patch distance on the locomotion velocity of Dorymyrmex goetschi (Hymenoptera, Formicidae). Insectes Sociaux, 51, 265 â 270.
dc.identifier.citedreferenceTscharntke, T., Klein, A. M., Kruess, A., Steffanâ Dewenter, I., & Thies, C. ( 2005 ). Landscape perspectives on agricultural intensification and biodiversityâ ecosystem service management. Ecology Letters, 8, 857 â 874.
dc.identifier.citedreferenceUrrutiaâ Escobar, M. X., & Armbrecht, I. ( 2013 ). Effect of two agroecological management strategies on ant (Hymenoptera: Formicidae) diversity on coffee plantations in southwestern Colombia. Environmental Entomology, 42, 194 â 203. https://doi.org/10.1603/EN11084
dc.identifier.citedreferenceVan Mele, P. V., Cuc, N. T. T., Seguni, Z., Camara, K., & Offenberg, J. ( 2009 ). Multiple sources of local knowledge: A global review of ways to reduce nuisance from the beneficial weaver ant Oecophylla. International Journal of Agricultural Resources, Governance and Ecology, 8, 484 â 504. https://doi.org/10.1504/IJARGE.2009.032646
dc.identifier.citedreferenceVan Mele, P., & Vayssières, J.â F. ( 2007 ). Weaver ants help farmers to capture organic markets. Appropriate Technology, 34, 22.
dc.identifier.citedreferenceVandermeer, J., Perfecto, I., Nuñez, G. I., Phillpott, S., & Ballinas, A. G. ( 2002 ). Ants ( Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems, 56, 271 â 276. https://doi.org/10.1023/A:1021328820123
dc.identifier.citedreferenceVandermeer, J., Perfecto, I., & Philpott, S. ( 2010 ). Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. BioScience, 60, 527 â 537. https://doi.org/10.1525/bio.2010.60.7.8
dc.identifier.citedreferenceVerdenyâ Vilalta, O., Aluja, M., & Casas, J. ( 2015 ). Relative roles of resource stimulus and vegetation architecture on the paths of flies foraging for fruit. Oikos, 124, 337 â 346. https://doi.org/10.1111/oik.01557
dc.identifier.citedreferenceWarfe, D. M., & Barmuta, L. A. ( 2004 ). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia, 141, 171 â 178. https://doi.org/10.1007/s00442-004-1644-x
dc.identifier.citedreferenceWells, K., Pfeiffer, M., Lakim, M. B., & Linsenmair, K. E. ( 2004 ). Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia. Journal of Biogeography, 31, 641 â 652. https://doi.org/10.1046/j.1365-2699.2003.01032.x
dc.identifier.citedreferenceYanoviak, S. P. ( 2015 ). Effects of lianas on canopy arthropod community structure. In S. A. Schnitzer, F. Bongers, R. J. Burnham, & F. E. Putz (Eds.), Ecology of lianas (pp. 343 â 361 ). Oxford, UK: Wileyâ Blackwell.
dc.identifier.citedreferenceYanoviak, S. P., & Schnitzer, S. A. ( 2013 ). Functional roles of lianas for forest canopy animals. In M. Lowman, S. Devy, & T. Ganesh (Eds.), Treetops at risk (pp. 209 â 214 ). New York, NY: Springer.
dc.identifier.citedreferenceYanoviak, S. P., Munk, Y., & Dudley, R. ( 2011 ). Evolution and ecology of directed aerial descent in arboreal ants. Integrative and comparative biology:icr006.
dc.identifier.citedreferenceYanoviak, S. P., Silveri, C., Stark, A. Y., Van Stan, J. T., & Levia, D. F. ( 2017 ). Surface roughness affects the running speed of tropical canopy ants. Biotropica, 49, 92 â 100. https://doi.org/10.1111/btp.12349
dc.identifier.citedreferenceClausen, C. P. ( 1940 ). Entomophagous insects. London, UK: McGraw Hill Book.
dc.identifier.citedreferenceAbdulla, N. R., Rwegasira, G. M., Jensen, K. M. V., Mwatawala, M. W., & Offenberg, J. ( 2016 ). Control of mango seed weevils ( Sternochetus mangiferae ) using the African Weaver Ant ( Oecophylla longinoda Latreille) (Hymenoptera: Formicidae). Journal of Applied Entomology, 140, 500 â 506. https://doi.org/10.1111/jen.12260
dc.identifier.citedreferenceAdams, B. J., Schnitzer, S. A., & Yanoviak, S. P. ( 2017 ). Trees as islands: Canopy ant species richness increases with the size of lianaâ free trees in a Neotropical forest. Ecography, 40, 1067 â 1075. https://doi.org/10.1111/ecog.02608
dc.identifier.citedreferenceAndersen, A. N. ( 1986 ). Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in southeastern Australia. Australian Journal of Zoology, 34, 53 â 64. https://doi.org/10.1071/ZO9860053
dc.identifier.citedreferenceApple, J., & Feener, D. Jr ( 2001 ). Ant visitation of extrafloral nectaries of Passiflora: The effects of nectary attributes and ant behavior on patterns in facultative antâ plant mutualisms. Oecologia, 127, 409 â 416. https://doi.org/10.1007/s004420000605
dc.identifier.citedreferenceArmbrecht, I., & Gallego, M. C. ( 2007 ). Testing ant predation on the coffee berry borer in shaded and sun coffee plantations in Colombia. Entomologia Experimentalis et Applicata, 124, 261 â 267. https://doi.org/10.1111/j.1570-7458.2007.00574.x
dc.identifier.citedreferenceArmbrecht, I., & Perfecto, I. ( 2003 ). Litterâ twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agriculture, Ecosystems and Environment, 97, 107 â 115. https://doi.org/10.1016/S0167-8809(03)00128-2
dc.identifier.citedreferenceArmbrecht, I., Rivera, L., & Perfecto, I. ( 2005 ). Reduced diversity and complexity in the leafâ litter ant assemblage of colombian coffee plantations. Conservation Biology, 19, 897 â 907. https://doi.org/10.1111/j.1523-1739.2005.00062.x
dc.identifier.citedreferenceArroyoâ Rodríguez, V., Asensio, N., Dunn, J. C., Cristóbalâ Azkarate, J., & Gonzalezâ Zamora, A. ( 2015 ). Use of lianas by primates: More than a food source. In S. A. Schnitzer, F. Bongers, R. Burnham, & F. E. Putz (Eds.), Ecology of lianas (pp. 407 â 426 ). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1007/978-3-540-30290-2
dc.identifier.citedreferenceBarrera, J. F. (Ed.) ( 2002 ). La broca del cafe: Una plaga que llego para quedarse. In Tres plagas del cafe en Chiapas (pp. 17 â 20 ). Lerma Campeche, Mexico: El Colegio de la Frontera Sur.
dc.identifier.citedreferenceBates, D., Maechler, M., Bolker, B., & Walker, S. ( 2014 ). lme4: Linear mixedâ effects models using Eigen and S4. R package version 1.1â 7. Retrieved from http://CRAN.R-project.org/package=lme4
dc.identifier.citedreferenceBos, M. M., Höhn, P., Saleh, S., Büche, B., Buchori, D., Steffanâ Dewenter, I., & Tscharntke, T. ( 2007 ). Insect diversity responses to forest conversion and agroforestry management. In T. Tscharntke, C. Leuschner, M. Zeller, E. Guhardja, & A. Bidin (Eds.), Stability of tropical rainforest margins (pp. 277 â 294 ). Berlin, Germany: Springer.
dc.identifier.citedreferenceCamargo, P. H., Martins, M. M., Feitosa, R. M., & Christianini, A. V. ( 2016 ). Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub. Oecologia, 181, 507 â 518. https://doi.org/10.1007/s00442-016-3571-z
dc.identifier.citedreferenceCamilo, J. E., Olivares, F. F., & Jimenez, H. A. ( 2003 ). Fenologia y reproduccion de la broca del café ( Hypothenemus hampei Ferrari) durante el desarrollo del fruto. Agronomia Mesoamericana, 14, 1559 â 1563.
dc.identifier.citedreferenceCatling, P. M. ( 1997 ). Influence of aerial Azteca nests on the epiphyte community of some Belizean orange orchards. Biotropica, 29, 237 â 242. https://doi.org/10.1111/j.1744-7429.1997.tb00031.x
dc.identifier.citedreferenceClay, N. A., Bauer, M., Solis, M., & Yanoviak, S. P. ( 2010 ). Arboreal substrates influence foraging in tropical ants. Ecological Entomology, 35, 417 â 423.
dc.identifier.citedreferenceCogni, R., Freitas, A. V., & Oliveira, P. S. ( 2003 ). Interhabitat differences in ant activity on plant foliage: Ants at extrafloral nectaries of Hibiscus pernambucensis in sandy and mangrove forests. Entomologia Experimentalis et Applicata, 107, 125 â 131. https://doi.org/10.1046/j.1570-7458.2003.00046.x
dc.identifier.citedreferenceCrowder, L. B., Mccollum, E. W., & Martin, T. H. ( 1998 ). Changing perspectives on food web interactions in lake littoral zones. In E. Jeppesen, M. Sondergaard, M. Sondergaard, & K. Christoffersen (Eds.), The structuring roles of submerged macrophytes in lakes (pp. 240 â 249 ). Berlin Heidelberg; New York, NY: Springer.
dc.identifier.citedreferenceDamon, A. ( 2001 ). A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research, 90 ( 6 ), 453 â 465.
dc.identifier.citedreferenceDavidson, D. W., Cook, S. C., Snelling, R. R., & Chua, T. H. ( 2003 ). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300 ( 5621 ), 969 â 972. https://doi.org/10.1126/science.1082074
dc.identifier.citedreferenceDe La Mora, A., Murnen, C., & Philpott, S. ( 2013 ). Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodiversity and Conservation, 22, 871 â 888. https://doi.org/10.1007/s10531-013-0454-z
dc.identifier.citedreferenceDe la Mora, A., Pérezâ Lachaud, G., Lachaud, J.â P. & Philpott, S. M. ( 2015 ). Local and landscape drivers of ant parasitism in a coffee landscape. Environmental entomology, 44, 939 â 950.
dc.identifier.citedreferenceDebach, P. ( 1964 ). Biological control of insect pests and weeds. London, UK: Chapman and Hall.
dc.identifier.citedreferenceElston, D. A., Moss, R., Boulinier, T., Arrowsmith, C., & Lambin, X. ( 2001 ). Analysis of aggregation, a worked example: Numbers of ticks on red grouse chicks. Parasitology, 122, 563 â 569.
dc.identifier.citedreferenceEnnis, K. K. ( 2010 ). Groundâ foraging ant diversity and the role of an aggressive ant (Azteca instabilis) in coffee agroecosystems. Master’s Thesis. University of Michigan.
dc.identifier.citedreferenceFahrig, L. ( 2003 ). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics, 34, 487 â 515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
dc.identifier.citedreferenceFarjiâ Brener, A. G., Barrantes, G., Laverde, O., Fierroâ Calderon, K., Bascope, F., & Lopez, A. ( 2007 ). Fallen branches as part of leafâ cutting ant trails: Their role in resource discovery and leaf transport rates in Atta cephalotes. Biotropica, 39, 211 â 215.
dc.identifier.citedreferenceFewell, J. H. ( 1988 ). Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behavioral Ecology and Sociobiology, 22, 401 â 408. https://doi.org/10.1007/BF00294977
dc.identifier.citedreferenceFloren, A., Biun, A., & Linsenmair, E. K. ( 2002 ). Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia, 131, 137 â 144. https://doi.org/10.1007/s00442-002-0874-z
dc.identifier.citedreferenceFloren, A., & Linsenmair, K. E. ( 2005 ). The importance of primary tropical rain forest for species diversity: An investigation using arboreal ants as an example. Ecosystems, 8, 559 â 567. https://doi.org/10.1007/s10021-002-0272-8
dc.identifier.citedreferenceGonthier, D. J., Ennis, K. K., Philpott, S. M., Vandermeer, J., & Perfecto, I. ( 2013 ). Ants defend coffee from berry borer colonization. BioControl, 58, 815 â 820. https://doi.org/10.1007/s10526-013-9541-z
dc.identifier.citedreferenceGordon, D. M. ( 2012 ). The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLoS One, 7, e50472. https://doi.org/10.1371/journal.pone.0050472
dc.identifier.citedreferenceHalaj, J., Ross, D. W., & Moldenke, A. R. ( 1998 ). Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. Journal of Arachnology, 26, 203 â 220.
dc.identifier.citedreferenceHashimoto, Y., Morimoto, Y., Widodo, E. S., & Mohamed, M. ( 2006 ). Vertical distribution pattern of ants in a Bornean tropical rainforest (Hymenoptera: Formicidae). Sociobiology, 47, 697 â 710.
dc.identifier.citedreferenceHuang, H., & Yang, P. ( 1987 ). The ancient cultured citrus ant. BioScience, 37, 665 â 671. https://doi.org/10.2307/1310713
dc.identifier.citedreferenceJaramillo, J., Borgemeister, C., & Baker, P. ( 2006 ). Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): Searching for sustainable control strategies. Bulletin of Entomological Research, 96, 223 â 233. https://doi.org/10.1079/BER2006434
dc.identifier.citedreferenceJedlicka, J. A., Greenberg, R., & Letourneau, D. K. ( 2011 ). Avian conservation practices strengthen ecosystem services in California vineyards. PLoS One, 6, e27347. https://doi.org/10.1371/journal.pone.0027347
dc.identifier.citedreferenceJiménezâ Soto, E., Cruzâ Rodríguez, J. A., Vandermeer, J., & Perfecto, I. ( 2013 ). Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Environmental Entomology, 42, 915 â 924. https://doi.org/10.1603/EN12202
dc.identifier.citedreferenceJimenezâ Soto, E., Morris, J. R., Letourneau, D. K., & Philpott, S. M. ( 2018 ). Data from: Vegetation connectivity increases ant activity and potential for antâ provided biocontrol services in a tropical agroforest. Dryad Digital Repository. https://doi.org/10.5061/dryad.rk26g0n
dc.identifier.citedreferenceLangellotto, G. A., & Denno, R. F. ( 2004 ). Responses of invertebrate natural enemies to complexâ structured habitats: A metaâ analytical synthesis. Oecologia, 139, 1 â 10. https://doi.org/10.1007/s00442-004-1497-3
dc.identifier.citedreferenceLarsen, A., & Philpott, S. M. ( 2010 ). twigâ nesting ants: The hidden predators of the coffee berry borer in Chiapas, Mexico. Biotropica, 42, 342 â 347. https://doi.org/10.1111/j.1744-7429.2009.00603.x
dc.identifier.citedreferenceLassau, S. A., and Hochuli, D. F. ( 2004 ). Effects of habitat complexity on ant assemblages. Ecography, 27, 157 â 164.
dc.identifier.citedreferenceLassau, S. A., Hochuli, D. F., Cassis, G., & Reid, C. A. ( 2005 ). Effects of habitat complexity on forest beetle diversity: Do functional groups respond consistently? Diversity and Distributions, 11, 73 â 82. https://doi.org/10.1111/j.1366-9516.2005.00124.x
dc.identifier.citedreferenceLeston, D. ( 1973 ). The ant mosaicâ tropical tree crops and the limiting of pests and diseases. PANS Pest Articles and News Summaries, 19, 311 â 341. https://doi.org/10.1080/09670877309412778
dc.identifier.citedreferenceLiere, H. and Larsen, A. ( 2010 ). Cascading traitâ mediation: disruption of a traitâ mediated mutualism by parasiteâ induced behavioral modification. Oikos, 119, 1394 â 1400.
dc.identifier.citedreferenceLongino, J. T. ( 2007 ). A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the Aurita group. Longwood, FL: Magnolia Press.
dc.identifier.citedreferenceLongino, J. T., Coddington, J., & Colwell, R. K. ( 2002 ). The ant fauna of a tropical rain forest: Estimating species richness three different ways. Ecology, 83, 689 â 702. https://doi.org/10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
dc.identifier.citedreferenceMayo, A., & Benabib, M. ( 2009 ). Testing central place foraging theory in the ant genus Pogonomyrmex: A review of the literature from 1977 through 2008. Retrieved from https://figshare.com/articles/
dc.identifier.citedreferenceMoguel, P., & Toledo, V. M. ( 1999 ). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13, 11 â 21. https://doi.org/10.1046/j.1523-1739.1999.97153.x
dc.identifier.citedreferenceMorris, J. R., Jimenezâ Soto, M. E., Philpott, S. M., & Perfecto, I. ( 2018 ). Antâ mediated biological control of the coffee berry borer ( Hypothenemus hampei Ferrari): Diversity, ecological complexity, and conservation biocontrol. Myrmecological News, 26, 1 â 17.
dc.identifier.citedreferenceMorris, J. R., & Perfecto, I. ( 2016 ). Testing the potential for ant predation of immature coffee berry borer ( Hypothenemus hampei ) life stages. Agriculture, Ecosystems and Environment, 233, 224 â 228. https://doi.org/10.1016/j.agee.2016.09.018
dc.identifier.citedreferenceMorris, J. R., Vandermeer, J., & Perfecto, I. ( 2015 ). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS One, 10, e0142850. https://doi.org/10.1371/journal.pone.0142850
dc.identifier.citedreferenceNestel, D., & Dickschen, F. ( 1990 ). The foraging kinetics of ground ant communities in different Mexican coffee agroecosystems. Oecologia, 84, 58 â 63. https://doi.org/10.1007/BF00665595
dc.identifier.citedreferenceOffenberg, J. ( 2015 ). Ants as tools in sustainable agriculture. Journal of Applied Ecology, 52, 1197 â 1205. https://doi.org/10.1111/1365-2664.12496
dc.identifier.citedreferenceOzaki, K., Takashima, S., & Suko, O. ( 2000 ). Ant predation suppresses populations of the scale insect Aulacaspis marina in natural mangrove forests. Biotropica, 32, 764 â 768. https://doi.org/10.1646/0006-3606(2000)032[0764:APSPOT]2.0.CO;2
dc.identifier.citedreferencePak, D., Iverson, A. L., Ennis, K. K., Gonthier, D. J., & Vandermeer, J. H. ( 2015 ). Parasitoid wasps benefit from shade tree size and landscape complexity in Mexican coffee agroecosystems. Agriculture, Ecosystems and Environment, 206, 21 â 32. https://doi.org/10.1016/j.agee.2015.03.017
dc.identifier.citedreferencePeng, R., & Christian, K. ( 2014 ). Weaver ant role in cashew orchards in Vietnam. Journal of Economic Entomology, 107, 1330 â 1338. https://doi.org/10.1603/EC14039
dc.identifier.citedreferencePerfecto, I., Rice, R. A., Greenberg, R., & Van der Voort, M. E. ( 1996 ). Shade coffee: A disappearing refuge for biodiversity. BioScience, 46, 598 â 608.
dc.identifier.citedreferencePerfecto, I., & Vandermeer, J. ( 2006 ). The effect of an antâ hemipteran mutualism on the coffee berry borer ( Hypothenemus hampei ) in southern Mexico. Agriculture, Ecosystems and Environment, 117, 218 â 221. https://doi.org/10.1016/j.agee.2006.04.007
dc.identifier.citedreferencePhilpott, S. M., Arendt, W. J., Armbrecht, I., Bichier, P., Diestch, T. V., Gordon, C., â ¦ Zolotoff, J. M. ( 2008 ). Biodiversity loss in Latin American coffee landscapes: Review of the evidence on ants, birds, and trees. Conservation Biology, 22, 1093 â 1105. https://doi.org/10.1111/j.1523-1739.2008.01029.x
dc.identifier.citedreferencePhilpott, S. M., & Armbrecht, I. ( 2006 ). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31, 369 â 377. https://doi.org/10.1111/j.1365-2311.2006.00793.x
dc.identifier.citedreferencePhilpott, S. M., Maldonado, J., Vandermeer, J., & Perfecto, I. ( 2004 ). Taking trophic cascades up a level: Behaviorallyâ modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos, 105, 141 â 147. https://doi.org/10.1111/j.0030-1299.2004.12889.x
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.