Show simple item record

A unified empirical likelihood approach for testing MCAR and subsequent estimation

dc.contributor.authorZhang, Shixiao
dc.contributor.authorHan, Peisong
dc.contributor.authorWu, Changbao
dc.date.accessioned2019-02-12T20:25:17Z
dc.date.available2020-05-01T18:03:25Zen
dc.date.issued2019-03
dc.identifier.citationZhang, Shixiao; Han, Peisong; Wu, Changbao (2019). "A unified empirical likelihood approach for testing MCAR and subsequent estimation." Scandinavian Journal of Statistics 46(1): 272-288.
dc.identifier.issn0303-6898
dc.identifier.issn1467-9469
dc.identifier.urihttps://hdl.handle.net/2027.42/147870
dc.description.abstractFor an estimation with missing data, a crucial step is to determine if the data are missing completely at random (MCAR), in which case a complete‐case analysis would suffice. Most existing tests for MCAR do not provide a method for a subsequent estimation once the MCAR is rejected. In the setting of estimating means, we propose a unified approach for testing MCAR and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing can then be used for estimation. The resulting estimators are consistent if the missingness of each response variable depends only on a set of fully observed auxiliary variables and the true outcome regression model is among the user‐specified functions for deriving the weights. The proposed method is based on the calibration idea from survey sampling literature and the empirical likelihood theory.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermissingness mechanism
dc.subject.othermissing completely at random
dc.subject.otherempirical likelihood
dc.subject.othercalibration
dc.titleA unified empirical likelihood approach for testing MCAR and subsequent estimation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics (Mathematical)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147870/1/sjos12351_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147870/2/sjos12351.pdf
dc.identifier.doi10.1111/sjos.12351
dc.identifier.sourceScandinavian Journal of Statistics
dc.identifier.citedreferenceOwen, A. ( 2001 ). Empirical likelihood. New York, NY: Chapman & Hall/CRC Press.
dc.identifier.citedreferenceHan, P. ( 2016b ). Intrinsic efficiency and multiple robustness in longitudinal studies with drop‐out. Biometrika, 103, 683 – 700.
dc.identifier.citedreferenceHan, P., & Wang, L. ( 2013 ). Estimation with missing data: Beyond double robustness. Biometrika, 100, 417 – 430.
dc.identifier.citedreferenceHorvitz, D. G., & Thompson, D. J. ( 1952 ). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663 – 685.
dc.identifier.citedreferenceImhof, J. P. ( 1961 ). Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 419 – 426.
dc.identifier.citedreferenceJamshidian, M., & Jalal, S. ( 2010 ). Tests of homoscedasticity, normality and missing completely at random for incomplete multivariate data. Psychometrika, 75, 649 – 674.
dc.identifier.citedreferenceKim, K. H., & Bentler, P. M. ( 2002 ). Tests of homogeneity of means and covariance matrices for multivariate incomplete data. Psychometrika, 67, 609 – 624.
dc.identifier.citedreferenceLi, J., & Yu, Y. ( 2015 ). A nonparametric test of missing completely at random for incomplete multivariate data. Psychometrika, 80, 707 – 726.
dc.identifier.citedreferenceLiang, K. Y., & Zeger, S. L. ( 1986 ). Longitudinal data analysis using generalised linear models. Biometrika, 73, 13 – 22.
dc.identifier.citedreferenceLittle, R. J. A. ( 1988 ). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 1198 – 1202.
dc.identifier.citedreferenceLittle, R. J. A., & Rubin, D. B. ( 2002 ). Statistical analysis with missing data (2nd ed.). New York, NY: John Wiley & Sons, Inc.
dc.identifier.citedreferenceOwen, A. ( 1988 ). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237 – 249.
dc.identifier.citedreferencePark, T., & Davis, C. S. ( 1993 ). A test of the missing data mechanism for repeated categorical data. Biometrics, 49, 631 – 638.
dc.identifier.citedreferenceQin, J., & Lawless, J. ( 1994 ). Empirical likelihood and general estimating equations. The Annals of Statistics, 22, 300 – 325.
dc.identifier.citedreferenceQin, J., Shao, J., & Zhang, B. ( 2008 ). Efficient and doubly robust imputation for covariate‐dependent missing responses. Journal of the American Statistical Association, 103, 797 – 810.
dc.identifier.citedreferenceQin, J., & Zhang, B. ( 2007 ). Empirical‐likelihood‐based inference in missing response problems and its application in observational studies. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 69, 101 – 122.
dc.identifier.citedreferenceRidout, M. S. ( 1991 ). Testing for random dropouts in repeated measurement data (reader reaction). Biometrics, 47, 1619 – 1621.
dc.identifier.citedreferenceRobins, J. M., Rotnitzky, A., & Zhao, L. P. ( 1994 ). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association, 89, 846 – 866.
dc.identifier.citedreferenceTan, Z. ( 2010 ). Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika, 97, 661 – 682.
dc.identifier.citedreferenceWu, C., & Sitter, R. R. ( 2001 ). A model‐calibration approach to using complete auxiliary information from survey data. Journal of the American Statistical Association, 96, 185 – 193.
dc.identifier.citedreferenceChan, K. C. G., & Yam, S. C. P. ( 2014 ). Oracle, multiple robust and multipurpose calibration in a missing response problem. Statistical Science, 29, 380 – 396.
dc.identifier.citedreferenceChen, H. Y., & Little, R. J. A. ( 1999 ). A test of missing completely at random for generalized estimating equations with missing data. Biometrika, 86, 1 – 13.
dc.identifier.citedreferenceChen, J., & Sitter, R. R. ( 1999 ). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statistica Sinica, 9, 385 – 406.
dc.identifier.citedreferenceDeville, J., & Särndal, C. ( 1992 ). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376 – 382.
dc.identifier.citedreferenceDiggle, P. J. ( 1989 ). Testing for random dropouts in repeated measurement data. Biometrics, 45, 1255 – 1258.
dc.identifier.citedreferenceHan, P. ( 2014 ). Multiply robust estimation in regression analysis with missing data. Journal of the American Statistical Association, 109, 1159 – 1173.
dc.identifier.citedreferenceHan, P. ( 2016a ). Combining inverse probability weighting and multiple imputation to improve robustness of estimation. Scandinavian Journal of Statistics, 43, 246 – 260.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.