Show simple item record

Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations

dc.contributor.authorKalafatoglu Eyiguler, E. Ceren
dc.contributor.authorShim, J. S.
dc.contributor.authorKuznetsova, M. M.
dc.contributor.authorKaymaz, Z.
dc.contributor.authorBowman, B. R.
dc.contributor.authorCodrescu, M. V.
dc.contributor.authorSolomon, S. C.
dc.contributor.authorFuller‐rowell, T. J.
dc.contributor.authorRidley, A. J.
dc.contributor.authorMehta, P. M.
dc.contributor.authorSutton, E. K.
dc.date.accessioned2019-04-02T18:11:23Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-02
dc.identifier.citationKalafatoglu Eyiguler, E. Ceren; Shim, J. S.; Kuznetsova, M. M.; Kaymaz, Z.; Bowman, B. R.; Codrescu, M. V.; Solomon, S. C.; Fuller‐rowell, T. J. ; Ridley, A. J.; Mehta, P. M.; Sutton, E. K. (2019). "Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations." Space Weather 17(2): 269-284.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/148396
dc.description.abstractAccurate determination of thermospheric neutral density holds crucial importance for satellite drag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and three physicsâ based models of the ionosphereâ thermosphere are compared with the neutral densities along the Challenging Microâ Satellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias), (2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set of metrics for the neutral density.Plain Language SummaryThermospheric neutral density is the largest source of uncertainty in atmospheric drag calculations. Consequently, mission and maneuver planning, satellite lifetime predictions, collision avoidance, and orbit determination depend on the accurate estimation of the thermospheric neutral density. Thermospheric neutral density varies in different timescales. In short timescales, the largest variations occur due to the geomagnetic storms. Several empirical and physicsâ based models of the ionosphereâ thermosphere system are used for estimating the variations in the neutral density. However, the storm time responses from the models are clouded by the climatology (background variations), upon which the effect of geomagnetic storms is superimposed. In this work, we show that it is critical to use reference levels for the neutral density to extract the true performance of the models for the evaluation of the storm time performances. We demonstrate that mean absolute error, prediction efficiency, and normalized root mean square error should be considered together for the performance evaluations, since each of them provides different aspects of the error.Key PointsUsing the average and maximum values of neutral densities to determine the model performances can be misleadingRemoving the quiet time trend from the neutral density reveals the actual performance of the model in simulating the storm time variationsMean absolute error, prediction efficiency, and normalized root mean square error should be considered together for the evaluations
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherGEMâ CEDAR challenge
dc.subject.otherCHAMP
dc.subject.otherIT models
dc.subject.othervalidation
dc.subject.otherthermospheric neutral density
dc.subject.othermetrics
dc.titleQuantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148396/1/swe20816_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148396/2/swe20816-sup-0001-2018SW002033-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/148396/3/swe20816.pdf
dc.identifier.doi10.1029/2018SW002033
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Tóth, G. ( 2006 ). The global ionosphereâ thermosphere model. Journal of Atmospheric and Solarâ Terrestrial Physics, 68 ( 8 ), 839 â 864. https://doi.org/10.1016/j.jastp.2006.01.008
dc.identifier.citedreferenceLühr, H., Liu, H., Park, J., & Müller, S. ( 2011 ). New aspects of the coupling between thermosphere and ionosphere, with special regards to CHAMP mission results. In M. A.   Abdu & D.   Pancheva (Eds.), Aeronomy of the Earth’s atmosphere and ionosphere (pp. 303 â 316 ). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978â 94â 007â 0326â 1
dc.identifier.citedreferenceLühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. ( 2004 ). Thermospheric upâ welling in the cusp region: Evidence from CHAMP observations. Geophysical Research Letters, 31, L06805. https://doi.org/10.1029/2003GL019314
dc.identifier.citedreferenceMcGranaghan, R., Knipp, D. J., McPherron, R. L., & Hunt, L. A. ( 2014 ). Impact of equinoctial highâ speed stream structures on thermospheric responses. Space Weather, 12, 277 â 297. https://doi.org/10.1002/2014SW001045
dc.identifier.citedreferenceMehta, P. M., Walker, A. C., Sutton, E. K., & Godinez, H. C. ( 2017 ). New density estimates derived using accelerometers on board the CHAMP and GRACE satellites. Space Weather, 15, 558 â 576. https://doi.org/10.1002/2016SW001562
dc.identifier.citedreferenceMillward, G. H., Müllerâ Wodarg, I. C. F., Aylward, A. D., Fullerâ Rowell, T. J., Richmond, A. D., & Moffett, R. J. ( 2001 ). An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphereâ thermosphere model with coupled electrodynamics. Journal of Geophysical Research, 106 ( A11 ), 24,733 â 24,744. https://doi.org/10.1029/2000JA000342
dc.identifier.citedreferenceMurray, S. A. ( 2018 ). The importance of ensemble techniques for operational space weather forecasting. Space Weather, 16, 1 â 10. https://doi.org/10.1029/2018SW001861
dc.identifier.citedreferencePardini, C., Moe, K., & Anselmo, L. ( 2012 ). Thermospheric density model biases at the 23rd sunspot maximum. Planetary and Space Science, 67 ( 1 ), 130 â 146. https://doi.org/10.1016/j.pss.2012.03.004
dc.identifier.citedreferencePicone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISEâ 00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), 1468. https://doi.org/10.1029/2002JA009430
dc.identifier.citedreferencePrölss, G. W. ( 2011 ). Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy. Surveys in Geophysics, 32 ( 2 ), 101 â 195. https://doi.org/10.1007/s10712â 010â 9104â 0
dc.identifier.citedreferenceQian, L., & Solomon, S. C. ( 2012 ). Thermospheric density: An overview of temporal and spatial variations. Space Science Reviews, 168 ( 1â 4 ), 147 â 173. https://doi.org/10.1007/s11214â 011â 9810â z
dc.identifier.citedreferenceQian, L., Solomon, S. C., Roble, R. G., Bowman, B. R., & Marcos, F. A. ( 2008 ). Thermospheric neutral density response to solar forcing. Advances in Space Research, 42 ( 5 ), 926 â 932. https://doi.org/10.1016/j.asr.2007.10.019
dc.identifier.citedreferenceRhoden, E. A., Forbes, J. M., & Marcos, F. A. ( 2000 ). The influence of geomagnetic and solar variabilities on lower thermosphere density. Journal of Atmospheric and Solarâ Terrestrial Physics, 62 ( 11 ), 999 â 1013. https://doi.org/10.1016/S1364â 6826(00)00066â 3
dc.identifier.citedreferenceRichmond, A. D., Ridley, E. C., & Roble, R. G. ( 1992 ). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19 ( 6 ), 601 â 604. https://doi.org/10.1029/92GL00401
dc.identifier.citedreferenceShcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky, T. A., & Kamaev, V. A. ( 2013 ). A survey of forecast error measures. World Applied Sciences Journal, 24 ( 24 ), 171 â 176. https://doi.org/10.5829/idosi.wasj.2013.24.itmies.80032
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B., Fullerâ Rowell, T. J., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., Anderson, D., Chau, J. L., & Sutton, E. ( 2014 ). Systematic evaluation of ionosphere/thermosphere (IT) models (pp. 145 â 160 ). Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118704417.ch13
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Bilitza, D., Butala, M., Codrescu, M., Emery, B. A., Foster, B., Fullerâ Rowell, T. J., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Sojka, J. J., Stephens, P., Thompson, D. C., Weimer, D., Zhu, L., & Sutton, E. ( 2012 ). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using spaceâ based observations. Space Weather, 10, S10004. https://doi.org/10.1029/2012SW000851
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastätter, L., Hesse, M., Bilitza, D., Butala, M., Codrescu, M., Emery, B., Foster, B., Fullerâ Rowell, T., Huba, J., Mannucci, A. J., Pi, X., Ridley, A., Scherliess, L., Schunk, R. W., Stephens, P., Thompson, D. C., Zhu, L., Anderson, D., Chau, J. L., Sojka, J. J., & Rideout, B. ( 2011 ). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using groundâ based observations. Space Weather, 9, S12003. https://doi.org/10.1029/2011SW000727
dc.identifier.citedreferenceShim, J. S., Rastaetter, L., Kuznetsova, K. M., Kalafatoglu, E. C., & Zheng, Y. ( 2015 ). Assessment of the predictive capability of IT models at the Community Coordinated Modeling Center. Presented at Ionospheric Effect Symposium, Alexandria VA.
dc.identifier.citedreferenceSiemes, C., De Teixeira Da Encarnação, J., Doornbos, E., Van Den Ijssel, J., Kraus, J., Pereštý, R., et al. ( 2016 ). Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities 2. Aeronomy Swarm Science Results after two years in Space. Earth, Planets and Space, 68 ( 1 ). https://doi.org/10.1186/s40623-016-0474-5
dc.identifier.citedreferenceSolomon, S. C., Qian, L., Didkovsky, L. V., Viereck, R. A., & Woods, T. N. ( 2011 ). Causes of low thermospheric density during the 2007â 2009 solar minimum. Journal of Geophysical Research, 116, A00H07. https://doi.org/10.1029/2011JA016508
dc.identifier.citedreferenceStorz, M. F., Bowman, B. R., Branson, M. J. I., Casali, S. J., & Tobiska, W. K. ( 2005 ). High accuracy satellite drag model (HASDSM). Advances in Space Research, 36 ( 12 ), 2497 â 2505.
dc.identifier.citedreferenceSutton, E. K. ( 2008 ). Effects of solar disturbances on the thermosphere densities and winds from CHAMP and GRACE satellite accelerometer data, (Doctoral Dissertation). Dept. of Aerosp. Eng. Sci., University of Colorado, Boulder, CO.
dc.identifier.citedreferenceSutton, E. K. ( 2009 ). Normalized force coefficients for satellites with elongated shapes. Journal of Spacecraft and Rockets, 46 ( 1 ), 112 â 116. https://doi.org/10.2514/1.40940
dc.identifier.citedreferenceSutton, E. K. ( 2011 ). Accelerometerâ derived atmospheric density from the CHAMP and GRACE satellites. Version 2.3. AIR FORCE RESEARCH LAB KIRTLAND AFB NM.
dc.identifier.citedreferenceSutton, E. K. ( 2018 ). A new method of physicsâ based data assimilation for the quiet and disturbed thermosphere. Space Weather, 16, 736 â 753. https://doi.org/10.1002/2017SW001785
dc.identifier.citedreferenceSutton, E. K., Forbes, J. M., & Nerem, R. S. ( 2005 ). Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. Journal of Geophysical Research, 110, A09S40. https://doi.org/10.1029/2004JA010985
dc.identifier.citedreferenceSutton, E. K., Forbes, J. M., Nerem, R. S., & Woods, T. N. ( 2006 ). Neutral density response to the solar flares of October and November, 2003. Geophysical Research Letters, 33, L22101. https://doi.org/10.1029/2006GL027737
dc.identifier.citedreferenceThayer, J. P., Lei, J., Forbes, J. M., Sutton, E. K., & Nerem, R. S. ( 2008 ). Thermospheric density oscillations due to periodic solar wind high speed streams. Journal of Geophysical Research, 113, A06307. https://doi.org/10.1029/2008JA013190
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110, A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWillmott, C. J., & Matsuura, K. ( 2005 ). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79 â 82.
dc.identifier.citedreferenceXu, J., Wang, W., Lei, J., Sutton, E. K., & Chen, G. ( 2011 ). The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits. Journal of Geophysical Research, 116, A02315. https://doi.org/10.1029/2010JA015995
dc.identifier.citedreferenceZesta, E., & Huang, C. Y. ( 2016 ). Satellite orbital drag. In G. V.   Khazanov (Ed.), Space Weather Fundamentals (pp. 329 â 351 ). Boca Raton, FL: CRC Press.
dc.identifier.citedreferenceAnderson, R. L., Born, G. H., & Forbes, J. M. ( 2009 ). Sensitivity of orbit predictions to density variability. Journal of Spacecraft and Rockets, 46 ( 6 ), 1214 â 1230. https://doi.org/10.2514/1.42138
dc.identifier.citedreferenceBowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., & Burke, W. J. ( 2008 ). 37TH COSPAR Scientific Assembly 2008â Proposal for CIRA 2008, a new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, (August).
dc.identifier.citedreferenceBruinsma, S. ( 2015 ). The DTMâ 2013 thermosphere model. Journal of Space Weather and Space Climate, 5, A1. https://doi.org/10.1051/swsc/2015001
dc.identifier.citedreferenceBruinsma, S., Sutton, E., Solomon, S. C., Fullerâ Rowell, T., & Fedrizzi, M. ( 2018 ). Space weather modeling capabilities assessment: Neutral density for orbit determination at low Earth orbit. Space Weather, 16, 1806 â 1816. https://doi.org/10.1029/2018SW002027
dc.identifier.citedreferenceBruinsma, S. L., & Forbes, J. M. ( 2010 ). Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE. Journal of Geophysical Research, 115, A11323. https://doi.org/10.1029/2010JA015605
dc.identifier.citedreferenceBurke, W. J., Huang, C. Y., Marcos, F. A., & Wise, J. O. ( 2007 ). Interplanetary control of thermospheric densities during large magnetic storms. Journal of Atmospheric and Solar â Terrestrial Physics, 69 ( 3 ), 279 â 287.
dc.identifier.citedreferenceBussyâ Virat, C. D., Ridley, A. J., & Getchius, J. W. ( 2018 ). Effects of uncertainties in the atmospheric density on the probability of collision between space objects. Space Weather, 16, 519 â 537. https://doi.org/10.1029/2017SW001705
dc.identifier.citedreferenceChai, T., & Draxler, R. R. ( 2014 ). Root mean square error (RMSE) or mean absolute error (MAE)?â Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7 ( 3 ), 1247 â 1250. https://doi.org/10.5194/gmdâ 7â 1247â 2014
dc.identifier.citedreferenceChen, G., Xu, J., Wang, W., & Burns, A. G. ( 2014 ). A comparison of the effects of CIRâ and CMEâ induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies. Journal of Geophysical Research: Space Physics, 119, 7928 â 7939. https://doi.org/10.1002/2014JA019831
dc.identifier.citedreferenceChen, G., Xu, J., Wang, W., Lei, J., & Burns, A. G. ( 2012 ). A comparison of the effects of CIRâ and CMEâ induced geomagnetic activity on thermospheric densities and spacecraft orbits: Case studies. Journal of Geophysical Research, 117, A08315. https://doi.org/10.1029/2012JA017782
dc.identifier.citedreferenceCodrescu, M. V., Fullerâ Rowell, T. J., Munteanu, V., Minter, C. F., & Millward, G. H. ( 2008 ). Validation of the coupled thermosphere ionosphere plasmasphere electrodynamics model: CTIPEâ mass spectrometer incoherent scatter temperature comparison. Space Weather, 6, S09005. https://doi.org/10.1029/2007SW000364
dc.identifier.citedreferenceCodrescu, M. V., Negrea, C., Fedrizzi, M., Fullerâ Rowell, T. J., Dobin, A., Jakowsky, N., Khalsa, H., Matsuo, T., & Maruyama, N. ( 2012 ). A realâ time run of the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model. Space Weather, 10, S02001. https://doi.org/10.1029/2011SW000736
dc.identifier.citedreferenceConnor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fullerâ Rowell, T. J. ( 2016 ). Modeling the ionosphereâ thermosphere response to a geomagnetic storm using physicsâ based magnetospheric energy input: OpenGGCMâ CTIM results. Journal of Space Weather and Space Climate, 6, A25. https://doi.org/10.1051/swsc/2016019
dc.identifier.citedreferenceDeng, Y., Fullerâ Rowell, T. J., Ridley, A. J., Knipp, D., & Lopez, R. E. ( 2013 ). Theoretical study: Influence of different energy sources on the cusp neutral density enhancement. Journal of Geophysical Research: Space Physics, 118, 2340 â 2349. https://doi.org/10.1002/jgra.50197
dc.identifier.citedreferenceElvidge, S., Angling, M. J., & Nava, B. ( 2014 ). On the use of modified Taylor diagrams to compare ionospheric assimilation models. Radio Science, 49, 737 â 745. https://doi.org/10.1002/2014RS005435
dc.identifier.citedreferenceElvidge, S., Godinez, H. C., & Angling, M. J. ( 2016 ). Improved forecasting of thermospheric densities using multiâ model ensembles. Geoscientific Model Development, 9 ( 6 ), 2279 â 2292. https://doi.org/10.5194/gmdâ 9â 2279â 2016
dc.identifier.citedreferenceEmmert, J. T., Warren, H. P., Segerman, A. M., Byers, J. M., & Picone, J. M. ( 2017 ). Propagation of atmospheric density errors to satellite orbits. Advances in Space Research, 59 ( 1 ), 147 â 165. https://doi.org/10.1016/j.asr.2016.07.036
dc.identifier.citedreferenceFedrizzi, M., Fullerâ Rowell, T. J., & Codrescu, M. V. ( 2012 ). Global Joule heating index derived from thermospheric density physicsâ based modeling and observations. Space Weather, 10, S03001. https://doi.org/10.1029/2011SW000724
dc.identifier.citedreferenceHejduk, M. D., & Snow, D. E. ( 2018 ). The effect of neutral density estimation errors on satellite conjunction serious event rates. Space Weather, 16, 849 â 869. https://doi.org/10.1029/2017SW001720
dc.identifier.citedreferenceHuang, C. Y., Su, Y.â J., Sutton, E. K., Weimer, D. R., & Davidson, R. L. ( 2014 ). Energy coupling during the August 2011 magnetic storm. Journal of Geophysical Research: Space Physics, 119, 1219 â 1232. https://doi.org/10.1002/2013JA019297
dc.identifier.citedreferenceHyndman, R. J., & Koehler, A. B. ( 2006 ). Another look at measures of forecast accuracy. International Journal of Forecasting, 22 ( 4 ), 679 â 688. https://doi.org/10.1016/j.ijforecast.2006.03.001
dc.identifier.citedreferenceKim, K. H., Moon, Y. J., Cho, K. S., Kim, H. D., & Park, J. Y. ( 2006 ). Atmospheric drag effects on the KOMPSATâ 1 satellite during geomagnetic superstorms. Earth, Planets and Space, 58 ( 12 ), 25 â 28. https://doi.org/10.1186/BF03351968
dc.identifier.citedreferenceKnipp, D., Kilcommons, L., Hunt, L., Mlynczak, M., Pilipenko, V., Bowman, B., & Deng, Y. ( 2013 ). Thermospheric damping response to sheathâ enhanced geospace storms. Geophysical Research Letters, 40, 1263 â 1267. https://doi.org/10.1002/grl.50197
dc.identifier.citedreferenceKnipp, D. J. ( 2016 ). Advances in space weather ensemble forecasting. Space Weather, 14, 52 â 53. https://doi.org/10.1002/2016SW001366
dc.identifier.citedreferenceKodikara, T., Carter, B., & Zhang, K. ( 2018 ). The First Comparison Between Swarmâ C Accelerometerâ Derived Thermospheric Densities and Physical and Empirical Model Estimates. Journal of Geophysical Research: Space Physics, 123, 5068 â 5086. https://doi.org/10.1029/2017JA025118
dc.identifier.citedreferenceKwak, Y. S., Richmond, A. D., Deng, Y., Forbes, J. M., & Kim, K. H. ( 2009 ). Dependence of the highâ latitude thermospheric densities on the interplanetary magnetic field. Journal of Geophysical Research, 114, A05304. https://doi.org/10.1029/2008JA013882
dc.identifier.citedreferenceLathuillère, C., Menvielle, M., Marchaudon, A., & Bruinsma, S. ( 2008 ). A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. Journal of Geophysical Research, 113, A07311. https://doi.org/10.1029/2007JA012991
dc.identifier.citedreferenceLei, J., Thayer, J. P., Lu, G., Burns, A. G., Wang, W., Sutton, E. K., & Emery, B. A. ( 2011 ). Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. Journal of Geophysical Research, 116, A03306. https://doi.org/10.1029/2010JA016164
dc.identifier.citedreferenceLiu, H., Lühr, H., Henize, V., & Köhler, W. ( 2005 ). Global distribution of the thermospheric total mass density derived from CHAMP. Journal of Geophysical Research, 110, A04301. https://doi.org/10.1029/2004JA010741
dc.identifier.citedreferenceLiu, R., Ma, S. Y., & Lühr, H. ( 2011 ). Predicting stormâ time thermospheric mass density variations at CHAMP and GRACE altitudes. Annales Geophysicae, 29 ( 3 ), 443 â 453. https://doi.org/10.5194/angeo-29-443-2011
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.