Show simple item record

Cerebral hypomyelination associated with biallelic variants of FIG4

dc.contributor.authorLenk, Guy M.
dc.contributor.authorBerry, Ian R.
dc.contributor.authorStutterd, Chloe A.
dc.contributor.authorBlyth, Moira
dc.contributor.authorGreen, Lydia
dc.contributor.authorVadlamani, Gayatri
dc.contributor.authorWarren, Daniel
dc.contributor.authorCraven, Ian
dc.contributor.authorFanjul‐fernandez, Miriam
dc.contributor.authorRodriguez‐casero, Victoria
dc.contributor.authorLockhart, Paul J.
dc.contributor.authorVanderver, Adeline
dc.contributor.authorSimons, Cas
dc.contributor.authorGibb, Susan
dc.contributor.authorSadedin, Simon
dc.contributor.authorWhite, Susan M.
dc.contributor.authorChristodoulou, John
dc.contributor.authorSkibina, Olga
dc.contributor.authorRuddle, Jonathan
dc.contributor.authorTan, Tiong Y.
dc.contributor.authorLeventer, Richard J.
dc.contributor.authorLivingston, John H.
dc.contributor.authorMeisler, Miriam H.
dc.date.accessioned2019-05-31T18:26:57Z
dc.date.available2020-07-01T17:47:46Zen
dc.date.issued2019-05
dc.identifier.citationLenk, Guy M.; Berry, Ian R.; Stutterd, Chloe A.; Blyth, Moira; Green, Lydia; Vadlamani, Gayatri; Warren, Daniel; Craven, Ian; Fanjul‐fernandez, Miriam ; Rodriguez‐casero, Victoria ; Lockhart, Paul J.; Vanderver, Adeline; Simons, Cas; Gibb, Susan; Sadedin, Simon; White, Susan M.; Christodoulou, John; Skibina, Olga; Ruddle, Jonathan; Tan, Tiong Y.; Leventer, Richard J.; Livingston, John H.; Meisler, Miriam H. (2019). "Cerebral hypomyelination associated with biallelic variants of FIG4." Human Mutation 40(5): 619-630.
dc.identifier.issn1059-7794
dc.identifier.issn1098-1004
dc.identifier.urihttps://hdl.handle.net/2027.42/149294
dc.description.abstractThe lipid phosphatase gene FIG4 is responsible for Yunisâ Varón syndrome and Charcotâ Marieâ Tooth disease Type 4J, a peripheral neuropathy. We now describe four families with FIG4 variants and prominent abnormalities of central nervous system (CNS) white matter (leukoencephalopathy), with onset in early childhood, ranging from severe hypomyelination to mild undermyelination, in addition to peripheral neuropathy. Affected individuals inherited biallelic FIG4 variants from heterozygous parents. Cultured fibroblasts exhibit enlarged vacuoles characteristic of FIG4 dysfunction. Two unrelated families segregate the same Gâ >â A variant in the +1 position of intron 21 in the homozygous state in one family and compound heterozygous in the other. This mutation in the splice donor site of exon 21 results in readâ through from exon 20 into intron 20 and truncation of the final 115 Câ terminal amino acids of FIG4, with retention of partial function. The observed CNS white matter disorder in these families is consistent with the myelination defects in the FIG4 null mouse and the known role of FIG4 in oligodendrocyte maturation. The families described here the expanded clinical spectrum of FIG4 deficiency to include leukoencephalopathy.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneurodegeneration
dc.subject.otherCMT4J
dc.subject.otherdysmyelination
dc.subject.otherendolysosome
dc.subject.otherleukodystrophy
dc.subject.otheroligodendrocyte
dc.subject.otherPIKFYVE
dc.subject.otherVAC14
dc.subject.othervacuolization, PtdIns(3,5)P2
dc.titleCerebral hypomyelination associated with biallelic variants of FIG4
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149294/1/humu23720-sup-0001-Supp_Mat_Lenk_2018.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149294/2/humu23720.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149294/3/humu23720_am.pdf
dc.identifier.doi10.1002/humu.23720
dc.identifier.sourceHuman Mutation
dc.identifier.citedreferenceChow, C. Y., Zhang, Y., Dowling, J. J., Jin, N., Adamska, M., Shiga, K., â ¦ Meisler, M. H. ( 2007 ). Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4. Nature, 448, 68 â 72.
dc.identifier.citedreferenceCoronaâ Rivera, J. R., Romoâ Huerta, C. O., Lópezâ Marure, E., Ramos, F. J., Estradaâ Padilla, S. A., & Zepedaâ Romero, L. C. ( 2011 ) New ocular findings in two sisters with Yunisâ Varón syndrome and literature review. European Journal of Medical Genetics, 54, 76 â 81.
dc.identifier.citedreferenceDiVincenzo, C., Elzinga, C. D., Medeiros, A. C., Karbassi, I., Jones, J. R., Evans, M. C., â ¦ Higgins, J. J. ( 2014 ). The allelic spectrum of Charcotâ Marieâ Tooth disease in over 17,000 individuals with neuropathy. Molecular Genetics & Genomic Medicine, 2, 522 â 529.
dc.identifier.citedreferenceDong, X., Shen, D., Wang, X., Dawson, T., Li, X., Zhang, Q., â ¦ and Xu, H. ( 2010 ). controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nature Communications, 13, 1 â 38.
dc.identifier.citedreferenceFerguson, C. J., Lenk, G. M., Jones, J. M., Grant, A. E., Winters, J. J., Dowling, J. J., â ¦ Meisler, M. H. ( 2012 ). Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Human Molecular Genetics, 21, 3525 â 3534.
dc.identifier.citedreferenceFerguson, C. J., Lenk, G. M., & Meisler, M. H. ( 2009 ). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Human Molecular Genetics, 18, 4868 â 4878.
dc.identifier.citedreferenceGuan, K., Dixon, J. E. ( 1991 ). Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione Sâ transferase. Anals of Biochemistry, 192, 262 â 267.
dc.identifier.citedreferenceJin, N., Chow, C. Y., Liu, L., Zolov, S. N., Bronson, R., Davisson, M., â ¦ Weisman, L. S. ( 2008 ). VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. The EMBO Journal, 27, 3221 â 3234.
dc.identifier.citedreferenceKevelam, S., Steenweg, M., Srivastava, S., Helman, G., Naidu, S., Schiffmann, R., â ¦ van der Knaap, M. ( 2016 ). Update on leukodystrophies: A historical perspective and adapted definition. Neuropediatrics, 47 ( 6 ), 349 â 354.
dc.identifier.citedreferenceKirsch S. A., Kugemann A., Carpaneto A., Böckmann R. A., Dietrich P. ( 2018 ). Phosphatidylinositolâ 3,5â bisphosphate lipidâ bindingâ induced activation of the human twoâ pore channel 2 Cellular and Molecular Life Science, 75 ( 20, 3803 â 3815.
dc.identifier.citedreferenceZolov, S. N., Bridges, D., Zhang, Y., Lee, W. W., Riehle, E., Verma, R., â ¦ Weisman, L. S. ( 2012 ). In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proceedings of the National Academy of Sciences of the United States of America, 23, 17472 â 17477.
dc.identifier.citedreferenceLenk, G. M., Szymanska, K., Debskaâ Vielhaber, G., Rydzanicz, M., Walczak, A., Bekiesinskaâ Figatowska, M., â ¦ Ploski, R. ( 2016b ). Biallelic mutations of VAC14 in pediatricâ onset neurological disease. American Journal of Human Genetics, 99, 188 â 194.
dc.identifier.citedreferenceLenk, G. M., & Meisler, M. H. ( 2014 ). Mouse models of PI(3,5)P2 deficiency with impaired lysosome function. Methods in Enzymology, 534, 245 â 260. https://doi.org/10.1016/B978â 0â 12â 397926â 1.00014â 7
dc.identifier.citedreferenceLenk, G. M., Frei, C. M., Miller, A. C., Wallen, R. C., Mironova, Y. A., Giger, R. J., â ¦ Meisler, M. H. ( 2016a ) Rescue of neurodegeneration in the Fig4 null mouse by a catalytically inactive FIG4 transgene. Human Molecular Genetics, 25, 340 â 347.
dc.identifier.citedreferenceLenk, G. M., Ferguson, C. J., Chow, C. Y., Jin, N., Jones, J. M., Grant, A. E., â ¦ Meisler, M. H. ( 2011 ). Pathogenic mechanism of the FIG4 mutation responsible for Charcotâ Marieâ Tooth disease CMT4J. PLOS Genetics, 7, e1002104.
dc.identifier.citedreferenceLek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., â ¦ MacArthur, D. G. ( 2016 ) Analysis of proteinâ coding genetic variation in 60, 706 humans. Nature, 536, 285 â 291.
dc.identifier.citedreferenceVan der Knaap, M. S., & Bugiani, M. ( 2017 ). Leukodystrophies: A proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathologica, 134 ( 3 ), 35 â â 382.
dc.identifier.citedreferenceBaulac, S., Lenk, G. M., Dufresnois, B., Ouled Amar Bencheikh, B., Couarch, P., Renard, J., â ¦ Leguern, E. ( 2014 ). Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria. Neurology, 82, 1068 â 1075.
dc.identifier.citedreferenceCampeau, P. M., Lenk, G. M., Lu, J. T., Bae, Y., Burrage, L., Turnpenny, P., â ¦ Lee, B. H. ( 2013 ). Yunisâ Varon syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. American Journal of Human Genetics, 92, 781 â 791.
dc.identifier.citedreferenceCingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; isoâ 2; isoâ 3 Fly (Austin) 2 6 2012. 80 â 92 https://doi.org/10.4161/fly.19695
dc.identifier.citedreferenceWinters, J. J., Ferguson, C. J., Lenk, G. M., Gigerâ Mateeva, V. I., Shrager, P., Meisler, M. H., & Giger, R. J. ( 2011 ). Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. The Journal of neuroscience, 31, 17736 â 17751.
dc.identifier.citedreferenceWilson, Z. N., Scott, A. L., Dowell, R. D., Odorizzi, G. ( 2018 ) PI(3,5)P(2) controls vacuole potassium transport to support cellular osmoregulation. Molecular Biology of the Cell, 29, 1718 â 1731.
dc.identifier.citedreferenceWang, X., Zhang, X., Dong, X., Samie, M., Li, X., Cheng, X., â ¦ and Xu, H. ( 2012 ). TPC proteins are phosphoinositideâ activated sodiumâ selective ion channels in endosomes and lysosomes. Cell, 12, 372 â 383.
dc.identifier.citedreferenceVaccari, I., Carbone, A., Previtali, S. C., Mironova, Y. A., Alberizzi, V., Noseda, R., â ¦ Bolino, A. ( 2015 ). Loss of Fig4 in both Schwann cells and motor neurons contributes to CMT4J neuropathy. Human Molecular Genetics, 24, 383 â 396.
dc.identifier.citedreferenceStutterd, C., Diakumis, P., Bahlo, M., Fanjul Fernandez, M., Leventer, R. J., Delatycki, M., â ¦ Lockhart, P. J. ( 2017 ). Neuropathology of childhoodâ onset basal ganglia degeneration caused by mutation of VAC14. Annals of Clinical and Translational Neurology, 4 ( 12 ), 859 â 864.
dc.identifier.citedreferenceShe, J., Guo, J., Chen, Q., Zeng, W., Jiang, Y., Bai, X. ( 2018 ) Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature, 556, 130 â 134.
dc.identifier.citedreferencePolman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., â ¦ Wolinsky, J. S. ( 2011 ) Diagnostic criteria for multiple sclerosis. Annals of Neurology, 69, 292 â 302.
dc.identifier.citedreferenceNicholson, G., Lenk, G. M., Reddel, S. W., Grant, A. E., Towne, C. F., Ferguson, C. J., â ¦ Meisler, M. H. ( 2011 ). Distinctive genetic and clinical features of CMT4J: A severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain, 134, 1959 â 1971.
dc.identifier.citedreferenceMironova, Y. A., Lin, J.â P., Kalinski, A., Huffman, L., Lenk, G. M., Havton, L. A., â ¦ Giger, R. J. ( 2018 ) Protective role of the lipid phosphatase Fig4 in the adult nervous system. Human Molecular Genetics, 27, 2443 â 2453.
dc.identifier.citedreferenceMcDonald, J. M., Krainc, D. ( 2017 ). Lysosomal Proteins as a Therapeutic Target in Neurodegeneration Annual Review of Medicine, 1, 68. 445 â 458. https://doi.org/10.1146/annurevâ medâ 050715â 104432
dc.identifier.citedreferenceMironova, Y. A., Lenk, G. M., Lin, J. P., Lee, S. J., Twiss, J. L., Vaccari, I., â ¦ Giger, R. J. ( 2016 ). PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. eLife, 5, e13023.
dc.identifier.citedreferenceMcKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., DePristo, M. A. ( 2010 ). The Genome Analysis Toolkit: a MapReduce framework for analyzing nextâ generation DNA sequencing data Genome Research, 9, 20, 1297 â 1303. https://doi.org/10.1101/gr.107524.110
dc.identifier.citedreferenceManford, A., Xia, T., Saxena, A. K., Stefan, C., Hu, F., Emr, F., Mao, Y. ( 2010 ). Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function EMBO Journal, 29, 1489 â 1498.
dc.identifier.citedreferenceLiu, Y., Bankaitis, V. A. ( 2010 ). Phosphoinositide phosphatases in cell biology and disease Progress in Lipid Research, 49, 201 â 217.
dc.identifier.citedreferenceLi, H., Durbin, R. ( 2009 ). Fast and accurate short read alignment with Burrowsâ Wheeler transform Bioinformatics 25, 1754 â 1760.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.