Show simple item record

A semiempirical dynamic model of reversible open circuit voltage drop in a PEM fuel cell

dc.contributor.authorHu, Zunyan
dc.contributor.authorXu, Liangfei
dc.contributor.authorSong, Ziyou
dc.contributor.authorLi, Jianqiu
dc.contributor.authorOuyang, Minggao
dc.date.accessioned2019-05-31T18:27:19Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-05-31T18:27:19Z
dc.date.issued2019-06-10
dc.identifier.citationHu, Zunyan; Xu, Liangfei; Song, Ziyou; Li, Jianqiu; Ouyang, Minggao (2019). "A semiempirical dynamic model of reversible open circuit voltage drop in a PEM fuel cell." International Journal of Energy Research 43(7): 2550-2561.
dc.identifier.issn0363-907X
dc.identifier.issn1099-114X
dc.identifier.urihttps://hdl.handle.net/2027.42/149313
dc.publisherWiley Periodicals, Inc.
dc.subject.othervoltage model
dc.subject.otheropen circuit voltage
dc.subject.otherPEM fuel cell
dc.subject.otherelectrochemical model
dc.subject.otherreversible voltage drop
dc.titleA semiempirical dynamic model of reversible open circuit voltage drop in a PEM fuel cell
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149313/1/er4127_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149313/2/er4127.pdf
dc.identifier.doi10.1002/er.4127
dc.identifier.sourceInternational Journal of Energy Research
dc.identifier.citedreferenceKundu S, Fowler M, Simon LC, Abouatallah R. Reversible and irreversible degradation in fuel cells during open circuit voltage durability testing. J Power Sources. 2008; 182 ( 1 ): 254 ‐ 258.
dc.identifier.citedreferenceAmphlett JC. Performance modeling of the Ballard mark iv solid polymer electrolyte fuel cell. J Electrochem Soc. 1995; 142 ( 1 ): 9 ‐ 15.
dc.identifier.citedreferenceMann RF, Amphlett JC, Hooper MAI, Jensen HM, Peppley BA, Roberge PR. Development and application of a generalised steady‐state electrochemical model for a pem fuel cell. J Power Sources. 2000; 86 ( 1–2 ): 173 ‐ 180.
dc.identifier.citedreferenceAmphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Rodrigues A. Parametric modelling of the performance of a 5kw proton‐exchange membrane fuel cell stack. J Power Sources. 1994; 49 ( 1 ): 349 ‐ 356.
dc.identifier.citedreferenceChang KY, Lin HJ, Chen PC. The optimal performance estimation for an unknown pemfc based on the Taguchi method and a generic numerical pemfc model. Int J Hydrogen Energy. 2009; 34 ( 4 ): 1990 ‐ 1998.
dc.identifier.citedreferenceLarminie, J., & Dicks, A. L. ( 2013 ). Fuel cell systems explained.
dc.identifier.citedreferenceSadli I. Modélisation par impédance d’une pile à combustible pem pour utilisation en électronique de puissance. Vandoeuvre‐les‐Nancy. In: INPL; 2006.
dc.identifier.citedreferenceKim J, Lee SM, Srinivasan S, Chamberlin CE. Modelling of proton exchange fuel cell membrane with an empirical equation. J Electrochem Soc. 1995; 142 ( 8 ): 2670 ‐ 2674.
dc.identifier.citedreferenceXing L, Das PK, Song X, Mamlouk M, Scott K. Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity. Appl Energy. 2015; 138: 242 ‐ 257.
dc.identifier.citedreferenceIsmail MS, Hughes KJ, Ingham DB, Ma L, Pourkashanian M. Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells. Appl Energy. 2012; 95: 50 ‐ 63.
dc.identifier.citedreferenceVilekar SA, Datta R. The effect of hydrogen crossover on open‐circuit voltage in polymer electrolyte membrane fuel cells. J Power Sources. 2010; 195 ( 8 ): 2241 ‐ 2247.
dc.identifier.citedreferenceSpinelli P, Francia C, Ambrosio EP, Lucariello M. Semi‐empirical evaluation of PEMFC electro‐catalytic activity. J Power Sources. 2008; 178 ( 2 ): 517 ‐ 524.
dc.identifier.citedreferenceFrancia C, Ijeri VS, Specchia S, Spinelli P. Estimation of hydrogen crossover through Nafion® membranes in PEMFCs. J Power Sources. 2011; 196 ( 4 ): 1833 ‐ 1839.
dc.identifier.citedreferenceZhang J, Tang Y, Song C, Zhang J, Wang H. PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 C to 120 C. J Power Sources. 2006; 163 ( 1 ): 532 ‐ 537.
dc.identifier.citedreferenceParthasarathy A, Srinivasan S, Appleby AJ, Martin CR. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation. J Electrochem Soc. 1992; 139 ( 9 ): 2530 ‐ 2537.
dc.identifier.citedreferenceParthasarathy A, Dave B, Srinivasan S, Appleby AJ, Martin CR. The platinum microelectrode/Nafion interface: An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics. J Electrochem Soc. 1992; 139 ( 6 ): 1634 ‐ 1641.
dc.identifier.citedreferenceBusquet S, Hubert CE, Labbe J, Mayer D, Metkemeijer R. A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell. J Power Sources. 2004; 134 ( 1 ): 41 ‐ 48.
dc.identifier.citedreferenceNeyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, Gu W. Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc. 2005; 152 ( 6 ): A1073 ‐ A1080.
dc.identifier.citedreferenceLi J, Hu Z, Xu L, et al. Fuel cell system degradation analysis of a Chinese plug‐in hybrid fuel cell city bus. Int J Hydrogen Energy. 2016; 41 ( 34 ): 15295 ‐ 15310.
dc.identifier.citedreferenceDarling RM, Meyers JP. Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc. 2003; 150 ( 11 ): A1523 ‐ A1527.
dc.identifier.citedreferenceBi W, Fuller TF. Modeling of PEM fuel cell Pt/C catalyst degradation. J Power Sources. 2008; 178 ( 1 ): 188 ‐ 196.
dc.identifier.citedreferenceThacker R, Hoare JP. Sorption of oxygen from solution by noble metals: I. Bright platinum. J Electroanal Chem Interfacial Electrochem. 1971; 30 ( 1 ): 1 ‐ 14.
dc.identifier.citedreferenceHu Z, Li J, Xu L, et al. Multi‐objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energ Conver Manage. 2016; 129: 108 ‐ 121.
dc.identifier.citedreferenceKundu, S. ( 2008 ). Development and application of a chemical degradation model for reinforced electrolyte membranes in polymer electrolyte membrane Fuel Cell Diss Abstr Int, Volume: 69–11, Section: B, page: 6980.
dc.identifier.citedreferenceSong Z, Hofmann H, Li J, Hou J, Han X, Ouyang M. Energy management strategies comparison for electric vehicles with hybrid energy storage system. Appl Energy. 2014; 134: 321 ‐ 331.
dc.identifier.citedreferenceMorse JD. Micro‐fuel cell power sources. International Journal of Energy Research. 2007; 31 ( 6–7 ): 576 ‐ 602.
dc.identifier.citedreferenceAhmadi P, Kjeang E. Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles. International Journal of Energy Research. 2017; 41 ( 5 ): 714 ‐ 727.
dc.identifier.citedreferenceBarbir F, Yazici S. Status and development of PEM fuel cell technology. International Journal of Energy Research. 2008; 32 ( 5 ): 369 ‐ 378.
dc.identifier.citedreferenceHörmandinger G, Lucas NJ. An evaluation of the economics of fuel cells in urban buses. International Journal of Energy Research. 1997; 21 ( 6 ): 495 ‐ 525.
dc.identifier.citedreferenceAy M, Midilli A, Dincer I. Exergetic performance analysis of a PEM fuel cell. International Journal of Energy Research. 2006; 30 ( 5 ): 307 ‐ 321.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.