Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies
Stimple, Samuel D.; Kalyoncu, Sibel; Desai, Alec A.; Mogensen, Jesper E.; Spang, Lotte T.; Asgreen, Désirée J.; Staby, Arne; Tessier, Peter M.
2019-08
View/ Open
Citation
Stimple, Samuel D.; Kalyoncu, Sibel; Desai, Alec A.; Mogensen, Jesper E.; Spang, Lotte T.; Asgreen, Désirée J. ; Staby, Arne; Tessier, Peter M. (2019). "Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies." Biotechnology and Bioengineering 116(8): 1868-1877.
Abstract
Sensitive detection of protein aggregates is important for evaluating the quality of biopharmaceuticals and detecting misfolded proteins in several neurodegenerative diseases. However, it is challenging to detect extremely low concentrations (<10 ppm) of aggregated protein in the presence of high concentrations of soluble protein. Glucagon, a peptide hormone used in the treatment of extreme hypoglycemia, is aggregation‐prone and forms amyloid fibrils. Detection of glucagon fibrils using conformation‐specific antibodies is an attractive approach for identifying such aggregates during process and formulation development. Therefore, we have used yeast surface display and magnetic‐activated cell sorting to sort single‐chain antibody libraries to identify antibody variants with high conformational specificity for glucagon fibrils. Notably, we find several high‐affinity antibodies that display excellent selectivity for glucagon fibrils, and we have integrated these antibodies into a sensitive immunoassay. Surprisingly, the sensitivity of our assay—which involves direct (nonantibody mediated) glucagon immobilization in microtiter plates—can be significantly enhanced by pretreating the microtiter plates with various types of globular proteins before glucagon immobilization. Moreover, increased total concentrations of glucagon peptide also significantly improve the sensitivity of our assay, which appears to be due to the strong seeding activity of immobilized fibrils at high glucagon concentrations. Our final assay is highly sensitive (fibril detection limit of ~0.5–1 ppm) and is >20 times more sensitive than detection using a conventional, amyloid‐specific fluorescent dye (Thioflavin T). We expect that this type of sensitive immunoassay can be readily integrated into the drug development process to improve the generation of safe and potent peptide therapeutics.Sensitive detection of protein aggregates is important for evaluating the quality of biopharmaceuticals and detecting misfolded proteins in several neurodegenerative diseases. However, it is challenging to detect extremely low concentrations (<10 ppm) of aggregated protein in the presence of high concentrations of soluble protein. Glucagon, a peptide hormone used in the treatment of extreme hypoglycemia, is aggregation‐prone and forms amyloid fibrils. Conformation‐specific antibodies were generated that recognize glucagon fibrils in a highly selective manner, and these antibodies were integrated into an ELISA method that is >20 times more sensitive than conventional methods for detecting glucagon fibrils.Publisher
Wiley Periodicals, Inc.
ISSN
0006-3592 1097-0290
Other DOIs
Types
Article
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.