Show simple item record

Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies

dc.contributor.authorStimple, Samuel D.
dc.contributor.authorKalyoncu, Sibel
dc.contributor.authorDesai, Alec A.
dc.contributor.authorMogensen, Jesper E.
dc.contributor.authorSpang, Lotte T.
dc.contributor.authorAsgreen, Désirée J.
dc.contributor.authorStaby, Arne
dc.contributor.authorTessier, Peter M.
dc.date.accessioned2019-08-09T17:15:51Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-08-09T17:15:51Z
dc.date.issued2019-08
dc.identifier.citationStimple, Samuel D.; Kalyoncu, Sibel; Desai, Alec A.; Mogensen, Jesper E.; Spang, Lotte T.; Asgreen, Désirée J. ; Staby, Arne; Tessier, Peter M. (2019). "Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies." Biotechnology and Bioengineering 116(8): 1868-1877.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/150615
dc.description.abstractSensitive detection of protein aggregates is important for evaluating the quality of biopharmaceuticals and detecting misfolded proteins in several neurodegenerative diseases. However, it is challenging to detect extremely low concentrations (<10 ppm) of aggregated protein in the presence of high concentrations of soluble protein. Glucagon, a peptide hormone used in the treatment of extreme hypoglycemia, is aggregation‐prone and forms amyloid fibrils. Detection of glucagon fibrils using conformation‐specific antibodies is an attractive approach for identifying such aggregates during process and formulation development. Therefore, we have used yeast surface display and magnetic‐activated cell sorting to sort single‐chain antibody libraries to identify antibody variants with high conformational specificity for glucagon fibrils. Notably, we find several high‐affinity antibodies that display excellent selectivity for glucagon fibrils, and we have integrated these antibodies into a sensitive immunoassay. Surprisingly, the sensitivity of our assay—which involves direct (nonantibody mediated) glucagon immobilization in microtiter plates—can be significantly enhanced by pretreating the microtiter plates with various types of globular proteins before glucagon immobilization. Moreover, increased total concentrations of glucagon peptide also significantly improve the sensitivity of our assay, which appears to be due to the strong seeding activity of immobilized fibrils at high glucagon concentrations. Our final assay is highly sensitive (fibril detection limit of ~0.5–1 ppm) and is >20 times more sensitive than detection using a conventional, amyloid‐specific fluorescent dye (Thioflavin T). We expect that this type of sensitive immunoassay can be readily integrated into the drug development process to improve the generation of safe and potent peptide therapeutics.Sensitive detection of protein aggregates is important for evaluating the quality of biopharmaceuticals and detecting misfolded proteins in several neurodegenerative diseases. However, it is challenging to detect extremely low concentrations (<10 ppm) of aggregated protein in the presence of high concentrations of soluble protein. Glucagon, a peptide hormone used in the treatment of extreme hypoglycemia, is aggregation‐prone and forms amyloid fibrils. Conformation‐specific antibodies were generated that recognize glucagon fibrils in a highly selective manner, and these antibodies were integrated into an ELISA method that is >20 times more sensitive than conventional methods for detecting glucagon fibrils.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein
dc.subject.otherantibody
dc.subject.otherconformation
dc.subject.otherdirected evolution
dc.subject.otheraggregate
dc.titleSensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150615/1/bit26994_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150615/2/bit26994.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150615/3/bit26994-sup-0001-Supporting_Information__submission_.pdf
dc.identifier.doi10.1002/bit.26994
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferencePedersen, J. S., & Otzen, D. E. ( 2008 ). Amyloid‐a state in many guises: Survival of the fittest fibril fold. Protein Science, 17 ( 1 ), 2 – 10. https://doi.org/10.1110/ps.073127808
dc.identifier.citedreferencePerchiacca, J. M., & Tessier, P. M. ( 2012 ). Engineering aggregation‐resistant antibodies. Annual Review of Chemical and Biomolecular Engineering, 3, 263 – 286. https://doi.org/10.1146/annurev‐chembioeng‐062011‐081052
dc.identifier.citedreferenceKayed, R., Head, E., Sarsoza, F., Saing, T., Cotman, C. W., Necula, M., … Glabe, C. G. ( 2007 ). Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Molecular Neurodegeneration, 2, 18. https://doi.org/10.1186/1750‐1326‐2‐18
dc.identifier.citedreferenceLowe, D., Dudgeon, K., Rouet, R., Schofield, P., Jermutus, L., & Christ, D. ( 2011 ). Aggregation, stability, and formulation of human antibody therapeutics. Advances in Protein Chemistry and Structural Biology, 84, 41 – 61. https://doi.org/10.1016/B978‐0‐12‐386483‐3.00004‐5
dc.identifier.citedreferenceOliveira, C. L., Behrens, M. A., Pedersen, J. S., Erlacher, K., Otzen, D., & Pedersen, J. S. ( 2009 ). A SAXS study of glucagon fibrillation. Journal of Molecular Biology, 387 ( 1 ), 147 – 161.
dc.identifier.citedreferenceOnoue, S., Ohshima, K., Debari, K., Koh, K., Shioda, S., Iwasa, S., … Yajima, T. ( 2004 ). Mishandling of the therapeutic peptide glucagon generates cytotoxic amyloidogenic fibrils. Pharmaceutical Research, 21 ( 7 ), 1274 – 1283.
dc.identifier.citedreferenceO’Nuallain, B., & Wetzel, R. ( 2002 ). Conformational Abs recognizing a generic amyloid fibril epitope. Proceedings of the National Academy of Sciences of United States of America, 99 ( 3 ), 1485 – 1490. https://doi.org/10.1073/pnas.022662599
dc.identifier.citedreferencePedersen, J. S. ( 2010 ). The nature of amyloid‐like glucagon fibrils. Journal of Diabetes Science and Technology, 4 ( 6 ), 1357 – 1367. https://doi.org/10.1177/193229681000400609
dc.identifier.citedreferencePedersen, J. S., Dikov, D., Flink, J. L., Hjuler, H. A., Christiansen, G., & Otzen, D. E. ( 2006 ). The changing face of glucagon fibrillation: Structural polymorphism and conformational imprinting. Journal of Molecular Biology, 355 ( 3 ), 501 – 523. https://doi.org/10.1016/j.jmb.2005.09.100
dc.identifier.citedreferenceWu, J. W., Breydo, L., Isas, J. M., Lee, J., Kuznetsov, Y. G., Langen, R., & Glabe, C. ( 2010 ). Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. Journal of Biological Chemistry, 285 ( 9 ), 6071 – 6079. https://doi.org/10.1074/jbc.M109.069542
dc.identifier.citedreferenceWhite, J. W., & Saunders, G. F. ( 1986 ). Structure of the human glucagon gene. Nucleic Acids Research, 14 ( 12 ), 4719 – 4730.
dc.identifier.citedreferenceWard, W. K., Massoud, R. G., Szybala, C. J., Engle, J. M., Youssef, J. E., Carroll, J. M., … DiMarchi, R. D. ( 2010 ). In vitro and in vivo evaluation of native glucagon and glucagon analog (MAR‐D28) during aging: Lack of cytotoxicity and preservation of hyperglycemic effect. Journal of Diabetes Science and Technology, 4 ( 6 ), 1311 – 1321. https://doi.org/10.1177/193229681000400604
dc.identifier.citedreferenceWang, W. ( 2005 ). Protein aggregation and its inhibition in biopharmaceutics. International Journal of Phamaceutics, 289 ( 1‐2 ), 1 – 30. https://doi.org/10.1016/j.ijpharm.2004.11.014
dc.identifier.citedreferenceUnson, C. G. ( 2002 ). Molecular determinants of glucagon receptor signaling. Biopolymers, 66 ( 4 ), 218 – 235. https://doi.org/10.1002/bip.10259
dc.identifier.citedreferenceTiller, K. E., Chowdhury, R., Li, T., Ludwig, S. D., Sen, S., Maranas, C. D., & Tessier, P. M. ( 2017 ). Facile affinity maturation of antibody variable domains using natural diversity mutagenesis. Frontiers in Immunology, 8, 986. https://doi.org/10.3389/fimmu.2017.00986
dc.identifier.citedreferenceTiller, K. E., Li, L., Kumar, S., Julian, M. C., Garde, S., & Tessier, P. M. ( 2017 ). Arginine mutations in antibody complementarity‐determining regions display context‐dependent affinity/specificity trade‐offs. Journal of Biological Chemistry, 292 ( 40 ), 16638 – 16652. https://doi.org/10.1074/jbc.M117.783837
dc.identifier.citedreferenceSteiner, S. S., Li, M., Hauser, R., & Pohl, R. ( 2010 ). Stabilized glucagon formulation for bihormonal pump use. Journal of Diabetes Science and Technology, 4 ( 6 ), 1332 – 1337. https://doi.org/10.1177/193229681000400606
dc.identifier.citedreferenceShire, S. J. ( 2009 ). Formulation and manufacturability of biologics. Current Opinion in Biotechnology, 20 ( 6 ), 708 – 714. https://doi.org/10.1016/j.copbio.2009.10.006
dc.identifier.citedreferenceRussell, S. J., El‐Khatib, F. H., Sinha, M., Magyar, K. L., McKeon, K., Goergen, L. G., … Damiano, E. R. ( 2014 ). Outpatient glycemic control with a bionic pancreas in type 1 diabetes. New England Journal of Medicine, 371 ( 4 ), 313 – 325. https://doi.org/10.1056/NEJMoa1314474
dc.identifier.citedreferenceRussell, S. J., El‐Khatib, F. H., Nathan, D. M., Magyar, K. L., Jiang, J., & Damiano, E. R. ( 2012 ). Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care, 35 ( 11 ), 2148 – 2155. https://doi.org/10.2337/dc12‐0071
dc.identifier.citedreferenceRabia, L. A., Zhang, Y., Ludwig, S. D., Julian, M. C., & Tessier, P. M. ( 2019 ). Net charge of antibody complementarity‐determining regions is a key predictor of specificity. Protein Engineering, Design and Selection. Advance online publication. https://doi.org/10.1093/protein/gzz002
dc.identifier.citedreferencePohl, R., Li, M., Krasner, A., & De Souza, E. ( 2015 ). Development of stable liquid glucagon formulations for use in artificial pancreas. Journal of Diabetes Science and Technology, 9 ( 1 ), 8 – 16. https://doi.org/10.1177/1932296814555541
dc.identifier.citedreferenceAlbanell, J., & Baselga, J. ( 1999 ). Trastuzumab, a humanized anti‐HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today, 35 ( 12 ), 931 – 946.
dc.identifier.citedreferenceBakhtiani, P. A., Caputo, N., Castle, J. R., El Youssef, J., Carroll, J. M., David, L. L., … Ward, W. K. ( 2015 ). A novel, stable, aqueous glucagon formulation using ferulic acid as an excipient. Journal of Diabetes Science and Technology, 9 ( 1 ), 17 – 23. https://doi.org/10.1177/1932296814552476
dc.identifier.citedreferenceCastle, J. R., Engle, J. M., El Youssef, J., Massoud, R. G., Yuen, K. C. J., Kagan, R., & Ward, W. K. ( 2010 ). Novel use of glucagon in a closed‐loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes Care, 33 ( 6 ), 1282 – 1287. https://doi.org/10.2337/dc09‐2254
dc.identifier.citedreferenceChabenne, J. R., DiMarchi, M. A., Gelfanov, V. M., & DiMarchi, R. D. ( 2010 ). Optimization of the native glucagon sequence for medicinal purposes. Journal of Diabetes Science and Technology, 4 ( 6 ), 1322 – 1331. https://doi.org/10.1177/193229681000400605
dc.identifier.citedreferenceDe Jong, K. L., Incledon, B., Yip, C. M., & DeFelippis, M. R. ( 2006 ). Amyloid fibrils of glucagon characterized by high‐resolution atomic force microscopy. Biophysical Journal, 91 ( 5 ), 1905 – 1914. https://doi.org/10.1529/biophysj.105.077438
dc.identifier.citedreferenceDobson, C. M. ( 1999 ). Protein misfolding, evolution and disease. Trends in Biochemical Sciences, 24 ( 9 ), 329 – 332.
dc.identifier.citedreferenceDong, M., Hovgaard, M. B., Xu, S., Otzen, D. E., & Besenbacher, F. ( 2006 ). AFM study of glucagon fibrillation via oligomeric structures resulting in interwoven fibrils. Nanotechnology, 17 ( 16 ), 4003 – 4009. https://doi.org/10.1088/0957‐4484/17/16/001
dc.identifier.citedreferenceEl‐Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G., & Damiano, E. R. ( 2010 ). A bihormonal closed‐loop artificial pancreas for type 1 diabetes. Science Translational Medicine, 2 ( 27 ), 27ra27. https://doi.org/10.1126/scitranslmed.3000619
dc.identifier.citedreferenceFalk, R., Falk, A., Dyson, M. R., Melidoni, A. N., Parthiban, K., Young, J. L., … McCafferty, J. ( 2012 ). Generation of anti‐Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods, 58 ( 1 ), 69 – 78. https://doi.org/10.1016/j.ymeth.2012.07.008
dc.identifier.citedreferenceGhodke, S., Nielsen, S. B., Christiansen, G., Hjuler, H. A., Flink, J., & Otzen, D. ( 2012 ). Mapping out the multistage fibrillation of glucagon. FEBS Journal, 279 ( 5 ), 752 – 765. https://doi.org/10.1111/j.1742‐4658.2011.08465.x
dc.identifier.citedreferenceGratzer, W. B., Bailey, E., & Beaven, G. H. ( 1967 ). Conformational states of glucagon. Biochemical and Biophysical Research Communications, 28 ( 6 ), 914 – 919.
dc.identifier.citedreferenceHall‐Boyer, K., Zaloga, G. P., & Chernow, B. ( 1984 ). Glucagon: Hormone or therapeutic agent? Critical Care Medicine, 12 ( 7 ), 584 – 589.
dc.identifier.citedreferenceHovgaard, M. B., Dong, M., Otzen, D. E., & Besenbacher, F. ( 2007 ). Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid‐liquid interface. Biophysical Journal, 93 ( 6 ), 2162 – 2169. https://doi.org/10.1529/biophysj.107.109686
dc.identifier.citedreferenceHrncic, R., Wall, J., Wolfenbarger, D. A., Murphy, C. L., Schell, M., Weiss, D. T., & Solomon, A. ( 2000 ). Antibody‐mediated resolution of light chain‐associated amyloid deposits. American Journal of Pathology, 157 ( 4 ), 1239 – 1246. https://doi.org/10.1016/S0002‐9440(10)64639‐1
dc.identifier.citedreferenceIsas, J. M., Luibl, V., Johnson, L. V., Kayed, R., Wetzel, R., Glabe, C. G., … Chen, J. ( 2010 ). Soluble and mature amyloid fibrils in drusen deposits. Investigative Ophthalmology and Visual Science, 51 ( 3 ), 1304 – 1310. https://doi.org/10.1167/iovs.09‐4207
dc.identifier.citedreferenceJulian, M. C., Rabia, L. A., Desai, A. A., Arsiwala, A., Gerson, J. E., Paulson, H. L., … Tessier, P. M. ( 2019 ). Nature‐inspired design and evolution of anti‐amyloid antibodies. Journal of Biological Chemistry. Advance online publication. https://doi.org/10.1074/jbc.RA118.004731
dc.identifier.citedreferenceKayed, R., & Glabe, C. G. ( 2006 ). Conformation‐dependent anti‐amyloid oligomer antibodies. Methods in Enzymology, 413, 326 – 344. https://doi.org/10.1016/S0076‐6879(06)13017‐7
dc.identifier.citedreferenceKayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., & Glabe, C. G. ( 2003 ). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300 ( 5618 ), 486 – 489. https://doi.org/10.1126/science.1079469
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.