Show simple item record

Mutualistic networks: moving closer to a predictive theory

dc.contributor.authorValdovinos, Fernanda S.
dc.date.accessioned2019-09-30T15:29:55Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:29:55Z
dc.date.issued2019-09
dc.identifier.citationValdovinos, Fernanda S. (2019). "Mutualistic networks: moving closer to a predictive theory." Ecology Letters 22(9): 1517-1534.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/151249
dc.description.abstractPlant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician’s standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist’s standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othernestedness
dc.subject.otherplant–frugivore networks
dc.subject.otherplant–pollinator networks
dc.subject.otherspecies traits
dc.subject.otherreproductive services
dc.subject.otherAdaptive foraging
dc.subject.otherconsumer–resource models
dc.subject.otherfloral rewards
dc.subject.otherforbidden links
dc.subject.otherLotka–Volterra model of mutualism
dc.titleMutualistic networks: moving closer to a predictive theory
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151249/1/ele13279_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151249/2/ele13279.pdf
dc.identifier.doi10.1111/ele.13279
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceRosenzweig, M.L. & MacArthur, R.H. ( 1963 ). Graphical representation and stability conditions of predator‐prey interactions. Am. Nat., 97, 209 – 223.
dc.identifier.citedreferenceSaavedra, S., Rohr, R.P., Dakos, V. & Bascompte, J. ( 2013 ). Estimating the tolerance of species to the effects of global environmental change. Nat. Comm., 4, 2350.
dc.identifier.citedreferenceSantamaría, L. & Rodríguez‐Gironés, M.A. ( 2007 ). Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol., 5, e31.
dc.identifier.citedreferenceSchmitz, O.J. ( 1997 ). Press perturbations and the predictability of ecological interactions in a food web. Ecology, 78, 55 – 69.
dc.identifier.citedreferenceSolomon, M.E. ( 1949 ). The natural control of animal populations. J. Anim. Ecol., 1 – 35.
dc.identifier.citedreferenceSolomon, M.E. ( 1949 ). The natural control of animal populations. J. Anim. Ecol., 18, 1 – 35.
dc.identifier.citedreferenceStephens, D.W. & Krebs, J.R. ( 1986 ). Foraging Theory. Princeton Univ. Press, Princeton.
dc.identifier.citedreferenceSuweis, S., Simini, F., Banavar, J.R. & Maritan, A. ( 2013 ). Emergence of structural and dynamical properties of ecological mutualistic networks. Nature, 500, 449.
dc.identifier.citedreferenceThèbault, E. & Fontaine, C. ( 2010 ). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853 – 856.
dc.identifier.citedreferenceThompson, J.N. ( 1994 ). The coevolutionary process. Univ. of Chicago Press, Chicago.
dc.identifier.citedreferenceValdovinos, F.S., Ramos‐Jiliberto, R., Flores, J.D., Espinoza, C. & López, G. ( 2009 ). Structure and dynamics of pollination networks: the role of alien plants. Oikos, 118, 1190 – 1200.
dc.identifier.citedreferenceValdovinos, F.S., Ramos‐Jiliberto, R., Garay‐Narváez, L., Urbani, P. & Dunne, J.A. ( 2010 ). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett., 13, 1546 – 1559.
dc.identifier.citedreferenceValdovinos, F.S., Moisset de Espanés, P., Flores, J.D. & Ramos‐Jiliberto, R. ( 2013 ). Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos, 122, 907 – 917.
dc.identifier.citedreferenceValdovinos, F.S., Briggs, H.M., Moisset de Espanés, P., Ramos‐Jiliberto, R. & Martinez, N.D. ( 2016 ). Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett., 19, 1277 – 1286.
dc.identifier.citedreferenceValdovinos, F.S., Berlow, E.L., de Espanés, P.M., Ramos‐Jiliberto, R., Vázquez, D.P. & Martinez, N.D. ( 2018 ). Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun., 9, 2153.
dc.identifier.citedreferenceVázquez, D.P., Morris, W.F. & Jordano, P. ( 2005 ). Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett., 8, 1088 – 1094.
dc.identifier.citedreferenceVázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R. & Poulin, R. ( 2007 ). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116, 1120 – 1127.
dc.identifier.citedreferenceVázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. ( 2009a ). Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot., 103, 1445 – 1457.
dc.identifier.citedreferenceVázquez, D.P., Chacoff, N.P. & Cagnolo, L. ( 2009b ). Evaluating multiple determinants of the structure of plant‐animal mutualistic networks. Ecology, 90, 2039 – 2046.
dc.identifier.citedreferenceVázquez, D.P., Lomáscolo, S.B., Maldonado, M.B., Chacoff, N.P., Dorado, J., Stevani, E.L. & et al ( 2012 ). The strength of plant–pollinator interactions. Ecology, 93, 719 – 725.
dc.identifier.citedreferenceVázquez, D.P., Ramos‐Jiliberto, R., Urbani, P. & Valdovinos, F.S. ( 2015 ). A conceptual framework for studying the strength of plant‐animal mutualistic interactions. Ecol. Lett., 18, 385 – 400.
dc.identifier.citedreferenceVieira, M.C. & Almeida‐Neto, M. ( 2015 ). A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett., 18, 144 – 152.
dc.identifier.citedreferenceVieira, M.C., Cianciaruso, M.V. & Almeida‐Neto, M. ( 2013 ). Plant‐Pollinator coextinctions and the loss of plant functional and phylogenetic diversity. PLoS ONE, 8, e81242.
dc.identifier.citedreferenceWootton, J.T. ( 1997 ). Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr., 67, 45 – 64.
dc.identifier.citedreferenceWootton, J.T. & Emmerson, M. ( 2005 ). Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst., 36, 419 – 444.
dc.identifier.citedreferenceYodzis, P. & Innes, S. ( 1992 ). Body size and consumer‐resource dynamics. Am. Nat., 139, 1151 – 1175.
dc.identifier.citedreferenceZhang, F., Hui, C. & Terblanche, J.S. ( 2011 ). An interaction switch predicts the nested architecture of mutualistic networks. Ecol. Lett., 14, 797 – 803.
dc.identifier.citedreferenceAizen, M.A., Morales, C.L., Vázquez, D.P., Garibaldi, L.A., Sáez, A. & Harder, L.D. ( 2014 ). When mutualism goes bad: density‐dependent impacts of introduced bees on plant reproduction. New Phytol., 204, 322 – 328.
dc.identifier.citedreferenceAllesina, S. & Tang, S. ( 2012 ). Stability criteria for complex ecosystems. Nature, 483, 205 – 208.
dc.identifier.citedreferenceArditi, R. & Berryman, A.A. ( 1991 ). The biological control paradox. Trends Ecol. Evol., 6, 32.
dc.identifier.citedreferenceBartomeus, I. ( 2013 ). Understanding linkage rules in plant‐pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS ONE, 8, e69200.
dc.identifier.citedreferenceBartomeus, I., Gravel, D., Tylianakis, J.M., Aizen, M.A., Dickie, I.A. & Bernard‐Verdier, M. ( 2016 ). A common framework for identifying linkage rules across different types of interactions. Funct. Ecol., 30, 1894 – 1903.
dc.identifier.citedreferenceBascompte, J. & Jordano, P. ( 2007 ). Plant‐animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst., 38, 567 – 93.
dc.identifier.citedreferenceBascompte, J. & Jordano, P. ( 2014 ). Mutualistic networks. Princeton University Press, Princeton.
dc.identifier.citedreferenceBascompte, J., Jordano, P., Melian, C.J. & Olesen, J.M. ( 2003 ). The nested assembly of plant‐animal mutualistic networks. Proc. Natl Acad. Sci. USA, 100, 9383 – 9387.
dc.identifier.citedreferenceBascompte, J., Jordano, P. & Olesen, J.M. ( 2006 ). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431 – 433.
dc.identifier.citedreferenceBastolla, U., Fortuna, M.A., Pascual‐García, A., Ferrera, A., Luque, B. & Bascompte, J. ( 2009 ). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 1018 – 1020.
dc.identifier.citedreferenceBenadi, G. & Gegear, R.J. ( 2018 ). Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat., 192, E81 – E92. https://doi.org/10.1086/697582.
dc.identifier.citedreferenceBerlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. & Brose, U. ( 2009 ). Simple prediction of interaction strengths in complex food webs. Proc. Natl Acad. Sci. USA, 106, 187 – 191.
dc.identifier.citedreferenceBlüthgen, N. ( 2010 ). Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl. Ecol., 11, 185 – 195.
dc.identifier.citedreferenceBlüthgen, N., Fründ, J., Vázquez, D.P. & Menzel, F. ( 2008 ). What do interaction network metrics tell us about specialization and biological traits? Ecology, 89, 3387 – 99.
dc.identifier.citedreferenceBosch, J., Martín González, A.M., Rodrigo, A. & Navarro, D. ( 2009 ). Plant‐pollinator networks: adding the pollinator’s perspective. Ecol. Lett., 12, 409 – 419.
dc.identifier.citedreferenceBoucher, D.H. ( 1985 ). Lotka‐Volterra models of mutualism and positive density‐dependence. Ecol. Model., 27, 251 – 270.
dc.identifier.citedreferenceBronstein, J.L. ( 1994 ). Conditional outcomes in mutualistic interactions. Trends Ecol. Evol., 9, 214 – 217.
dc.identifier.citedreferenceBronstein, J.L. ( 2001 ). The exploitation of mutualisms. Ecol. Lett., 4, 277 – 287.
dc.identifier.citedreferenceBronstein, J.L., Alarcón, R. & Geber, M. ( 2006 ). The evolution of plant‐insect mutualisms. New Phytol., 172, 412 – 428.
dc.identifier.citedreferenceBrose, U., Williams, R.J. & Martinez, N.D. ( 2006 ). Allometric scaling enhances stability in complex food webs. Ecol. Lett., 9, 1228 – 1236.
dc.identifier.citedreferenceBrosi, B.J. & Briggs, H.M. ( 2013 ). Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci., 110, 13044 – 13048.
dc.identifier.citedreferenceCaraDonna, P.J., Petry, W.K., Brennan, R.M., Cunningham, J.L., Bronstein, J.L., Waser, N.M. & et al ( 2017 ). Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett., 20, 385 – 394.
dc.identifier.citedreferenceChacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. ( 2012 ). Evaluating sampling completeness in a desert plant–pollinator network. J. Anim. Ecol., 81, 190 – 200.
dc.identifier.citedreferenceClauset, A., Moore, C. & Newman, M.E. ( 2008 ). Hierarchical structure and the prediction of missing links in networks. Nature, 453, 98.
dc.identifier.citedreferenceCorbet, S.A. ( 2000 ). Conserving compartments in pollination webs. Cons. Biol., 14, 1229 – 1231.
dc.identifier.citedreferenceCoux, C., Rader, R., Bartomeus, I. & Tylianakis, J.M. ( 2016 ). Linking species functional roles to their network roles. Ecol. Lett., 19, 762 – 770.
dc.identifier.citedreferenceCrea, C., Ali, R.A. & Rader, R. ( 2016 ). A new model for ecological networks using species‐level traits. Methods Ecol. Evol., 7, 232 – 241.
dc.identifier.citedreferenceDunne, J.A. ( 2006 ). The network structure of food webs. In Ecological networks: linking structure to dynamics in food webs (eds Pascual, M. & Dunne, J. ). Oxford University Press, New York, pp. 27 – 86.
dc.identifier.citedreferenceDupont, Y.L. & Olesen, J.M. ( 2009 ). Ecological modules and roles of species in heathland plant‐insect flower visitor networks. J. Anim. Ecol., 78, 346 – 353.
dc.identifier.citedreferenceEklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro‐Urgal, R., Chacoff, N.P., et al ( 2013 ). The dimensionality of ecological networks. Ecol. Lett., 16, 577 – 583.
dc.identifier.citedreferenceFortuna, M.A. & Bascompte, J. ( 2006 ). Habitat loss and the structure of plant‐animal mutualistic networks. Ecol. Lett., 9, 281 – 286.
dc.identifier.citedreferenceFründ, J., McCann, K.S. & Williams, N.M. ( 2016 ). Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos, 125, 502 – 513.
dc.identifier.citedreferenceGause, G.F. ( 1932 ). Experimental studies on the struggle for existence: I. Mixed population of two species of yeast. J. Exp. Biol., 9, 389 – 402.
dc.identifier.citedreferenceGómez, J.M. & Zamora, R. ( 2006 ). Ecological factors promoting the evolution of generalization in pollination systems. In Generalization and specialization in pollination systems (eds Waser, N.M. & Ollerton, J. ). The University of Chicago Press, Chicago, pp. 145 – 166.
dc.identifier.citedreferenceGoulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. ( 2015 ). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.
dc.identifier.citedreferenceGravel, D., Poisot, T., Albouy, C., Velez, L. & Mouillot, D. ( 2013 ). Inferring food web structure from predator‐prey body size relationships. Methods Ecol. Evol., 4, 1083 – 1090.
dc.identifier.citedreferenceHegland, S.J., Dunne, J., Nielsen, A. & Memmott, J. ( 2010 ). How to monitor ecological communities cost‐efficiently: the example of plant‐pollinator networks. Biol. Cons., 143, 2092 – 2101.
dc.identifier.citedreferenceHolland, J.N. & DeAngelis, D.L. ( 2010 ). A consumer‐resource approach to the density‐dependent population dynamics of mutualism. Ecology, 91, 1286 – 1295.
dc.identifier.citedreferenceHolland, J.N., DeAngelis, D.L. & Bronstein, J.L. ( 2002 ). Population dynamics and mutualism: functional responses of benefits and costs. Am. Nat., 159, 231 – 244.
dc.identifier.citedreferenceHolland, J.N., Ness, J.H., Boyle, A.L. & Bronstein, J.L. ( 2005 ). Mutualisms as consumer-resource interactions. In Ecology of Predator-Prey Interactions. (eds Barbosa, P., Castellanos, I. ). Oxford University Press, New York, NY, pp. 17 – 33.
dc.identifier.citedreferenceHoulahan, J.E., McKinney, S.T., Anderson, T.M. & McGill, B.J. ( 2017 ). The priority of prediction in ecological understanding. Oikos, 126, 1 – 7.
dc.identifier.citedreferenceJames, A., Pitchford, J.W. & Plank, M.J. ( 2012 ). Disentangling nestedness from models of ecological complexity. Nature, 487, 227 – 230.
dc.identifier.citedreferenceJames, A., Pitchford, J.W. & Plank, M.J. ( 2013 ). James et al. reply. Nature, 500, E2.
dc.identifier.citedreferenceJordano, P. ( 1987 ). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat., 129, 657 – 677.
dc.identifier.citedreferenceJordano, P. ( 2016 ). Sampling networks of ecological interactions. Funct. Ecol., 30, 1883 – 93.
dc.identifier.citedreferenceKaiser‐Bunbury, C.N., Muff, S., Memmott, J., Müller, C.B. & Caflisch, A. ( 2010 ). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett., 13, 442 – 452.
dc.identifier.citedreferenceKot, M. ( 2001 ). Elements of mathematical ecology. Cambridge University Press, Cambridge, UK
dc.identifier.citedreferenceLuck, R.F. ( 1990 ). Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol. Evol., 5, 196 – 199.
dc.identifier.citedreferenceMartinez, N.D. ( 1991 ). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol. Monogr., 61, 367 – 392.
dc.identifier.citedreferenceMay, R.M. ( 1973 ). Complexity and stability in model ecosystems. Princeton Univ. Press, Princeton.
dc.identifier.citedreferenceMcCann, K., Hastings, A. & Huxel, G.R. ( 1998 ). Weak trophic interactions and the balance of nature. Nature, 395, 794.
dc.identifier.citedreferenceMemmott, J., Waser, N.M. & Price, M.V. ( 2004 ). Tolerance of pollination networks to species extinctions. Proc. R Soc. Lond. B, 271, 2605 – 2611.
dc.identifier.citedreferenceMorales‐Castilla, I., Matias, M.G., Gravel, D. & Araújo, M.B. ( 2015 ). Inferring biotic interactions from proxies. Trends Ecol. Evol., 30, 347 – 356.
dc.identifier.citedreferenceMorin, P. ( 1999 ). Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology, 80, 752 – 760.
dc.identifier.citedreferenceMorris, W.F., Vázquez, D.P. & Chacoff, N.P. ( 2010 ). Benefit and cost curves for typical pollination mutualisms. Ecology, 91, 1276 – 1285.
dc.identifier.citedreferenceMurdoch, W.W. & Oaten, A.. ( 1975 ). Predation and population stability.
dc.identifier.citedreferenceNielsen, A. & Bascompte, J. ( 2007 ). Ecological networks, nestedness and sampling effort. J. Ecol., 95, 1134 – 1141.
dc.identifier.citedreferenceOkuyama, T. & Holland, J.N. ( 2008 ). Network structural properties mediate the stability of mutualistic communities. Ecol. Lett., 11, 208 – 216.
dc.identifier.citedreferenceOlesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. & Jordano, P. ( 2010 ). Missing and forbidden links in mutualistic networks. Proc. Roy. Soc., B, 278, 725 – 732.
dc.identifier.citedreferenceOllerton, J. ( 2017 ). Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst., 48, 353 – 76.
dc.identifier.citedreferencePascual‐García, A. & Bastolla, U. ( 2017 ). Mutualism supports biodiversity when the direct competition is weak. Nat. Commun., 8, 14326.
dc.identifier.citedreferencePeralta, G. ( 2016 ). Merging evolutionary history into species interaction networks. Funct. Ecol., 30, 1917 – 1925.
dc.identifier.citedreferencePerazzo, R.P.J., Hernandez, L., Ceva, H., Burgos, E. & Alvarez‐Hamelin, J.I. ( 2014 ). Study of the influence of the phylogenetic distance on the interaction network of mutualistic ecosystems. Phys. A, 394, 124 – 135.
dc.identifier.citedreferencePetanidou, T., Kallimanis, A.S., Tzanopoulos, J., Sgardelis, S.P. & Pantis, J.D. ( 2008 ). Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett., 11, 564 – 575.
dc.identifier.citedreferencePonisio, L.C. & M’Gonigle, L.K. ( 2017 ). Coevolution leaves a weak signal on ecological networks. Ecosphere, 8, e01798. https://doi.org/10.1002/ecs2.1798.
dc.identifier.citedreferencePonisio, L.C., Gaiarsa, M.P. & Kremen, C. ( 2017 ). Opportunistic attachment assembles plant‐pollinator networks. Ecol. Lett., 20, 1261 – 1272.
dc.identifier.citedreferencePotts, S.G., Imperatriz‐Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., et al. ( 2016 ). Safeguarding pollinators and their values to human well‐being. Nature, 540, 220 – 229.
dc.identifier.citedreferenceRaimundo, R.L., Guimarães, P.R. Jr & Evans, D.M. ( 2018 ). Adaptive Networks for Restoration Ecology. Trends Ecol. Evol., 33, 664 – 675. https://doi.org/10.1016/j.tree.2018.06.002.
dc.identifier.citedreferenceRamos‐Jiliberto, R., Albornoz, A.A., Valdovinos, F.S., Smith‐Ramírez, C., Arim, M., Armesto, J.J. & et al ( 2009 ). A network analysis of plant–pollinator interactions in temperate rain forests of Chiloé Island. Chile. Oecologia, 160, 697.
dc.identifier.citedreferenceRamos‐Jiliberto, R., Domínguez, D., Espinoza, C., Lopez, G., Valdovinos, F.S., Bustamante, R.O. & et al ( 2010 ). Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol Complex, 7, 86 – 90.
dc.identifier.citedreferenceRamos‐Jiliberto, R., Valdovinos, F.S., Moisset de Espanés, P. & Flores, J.D. ( 2012 ). Topological plasticity increases robustness of mutualistic networks. J. Anim. Ecol., 81, 896 – 904.
dc.identifier.citedreferenceRezende, E.L., Lavabre, J.E., Guimarães, P.R., Jordano, P. & Bascompte, J. ( 2007 ). Non‐random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925.
dc.identifier.citedreferenceRivera‐Hutinel, A., Bustamante, R.O., Marín, V.H. & Medel, R. ( 2012 ). Effects of sampling completeness on the structure of plant–pollinator networks. Ecology, 93, 1593 – 1603.
dc.identifier.citedreferenceRohr, R.P., Saavedra, S. & Bascompte, J. ( 2014 ). On the structural stability of mutualistic systems. Science, 25, 416 – 425.
dc.identifier.citedreferenceRosenzweig, M.L. ( 1971 ). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171, 385 – 387.
dc.identifier.citedreferenceSaavedra, S. & Stouffer, D.B. ( 2013 ). “Disentangling nestedness” disentangled. Nature, 500, E1.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.