Show simple item record

Hitting Reset on Sediment Toxicity: Sediment Homogenization Alters the Toxicity of Metal‐Amended Sediments

dc.contributor.authorCostello, David M.
dc.contributor.authorHarrison, Anna M.
dc.contributor.authorHammerschmidt, Chad R.
dc.contributor.authorMendonca, Raissa M.
dc.contributor.authorBurton, G. Allen
dc.date.accessioned2019-09-30T15:31:30Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:31:30Z
dc.date.issued2019-09
dc.identifier.citationCostello, David M.; Harrison, Anna M.; Hammerschmidt, Chad R.; Mendonca, Raissa M.; Burton, G. Allen (2019). "Hitting Reset on Sediment Toxicity: Sediment Homogenization Alters the Toxicity of Metal‐Amended Sediments." Environmental Toxicology and Chemistry 38(9): 1995-2007.
dc.identifier.issn0730-7268
dc.identifier.issn1552-8618
dc.identifier.urihttps://hdl.handle.net/2027.42/151311
dc.description.abstractLaboratory testing of sediments frequently involves manipulation by amendment with contaminants and homogenization, which changes the physicochemical structure of sediments. These changes can influence the bioavailability of divalent metals, and field and mesocosm experiments have shown that laboratory‐derived thresholds are often overly conservative. We assessed the mechanisms that lead to divergence between laboratory‐ and field‐derived thresholds; specifically, we assessed the importance of slow equilibration to solid‐phase ligands and vertical stratification. To mimic natural physicochemical conditions, we uniquely aged sediment with a flow‐through exposure system. These sediments were then homogenized and compared, toxicologically, with freshly metal‐amended sediments in a 28‐d chronic toxicity bioassay with the amphipod Hyalella azteca. We assessed concentration–response relationships for 3 metals (copper, nickel, and zinc) and 5 geochemically distinct sediments. We observed minimal differences in growth and survival of H. azteca between aged and freshly spiked sediments across all sediments and metals. These trends suggest that a loss of toxicity observed during long‐term sediment aging is reversed after sediment homogenization. By comparison with mesocosm experiments, we demonstrate that homogenizing sediment immediately before toxicity assays may produce artificially high toxicity thresholds. We suggest that toxicity assays with sediments that maintain vertical redox gradients are needed to generate field‐relevant sediment metal toxicity thresholds. Environ Toxicol Chem 2019;38:1995–2007. © 2019 SETAC.Aging of sediment alone does not alter metal toxicity to amphipods, but it is the combination of aging and preserving natural redox gradients that can lower toxicity.
dc.publisherCRC
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMetals
dc.subject.otherMetal bioavailability
dc.subject.otherMetal toxicity
dc.subject.otherSediment toxicity
dc.subject.otherSediment assessment
dc.titleHitting Reset on Sediment Toxicity: Sediment Homogenization Alters the Toxicity of Metal‐Amended Sediments
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/1/etc4512.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/2/etc4512_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/3/etc4512-sup-0001-EMBOSST2_supp_31May2019.pdf
dc.identifier.doi10.1002/etc.4512
dc.identifier.sourceEnvironmental Toxicology and Chemistry
dc.identifier.citedreferenceNorwood WP, Borgmann U, Dixon DG. 2006. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation in Hyalella azteca. Environ Pollut 143: 519 – 528.
dc.identifier.citedreferenceCostello DM, Burton GA, Hammerschmidt CR, Rogevich EC, Schlekat CE. 2011. Nickel phase partitioning and toxicity in field‐deployed sediments. Environ Sci Technol 45: 5798 – 5805.
dc.identifier.citedreferenceCostello DM, Hammerschmidt CR, Burton GA. 2015. Copper sediment toxicity and partitioning during oxidation in a flow‐through flume. Environ Sci Technol 49: 6926 – 6933.
dc.identifier.citedreferenceCostello DM, Hammerschmidt CR, Burton GA. 2016. Nickel partitioning and toxicity in sediment during aging: Variation in toxicity related to stability of metal partitioning. Environ Sci Technol 50: 11337 – 11345.
dc.identifier.citedreferenceDale VH, Biddinger GR, Newman MC, Oris JT, Suter GW, Thompson T, Armitage TM, Meyer JL, Allen‐King RM, Burton GA Jr, Chapman PM, Conquest LL, Fernandez IJ, Landis WG, Master LL, Mitsch WJ, Mueller TC, Rabeni CF, Rodewald AD, Sanders JG, van Heerden IL. 2008. Enhancing the ecological risk assessment process. Integr Environ Assess Manag 4: 306 – 313.
dc.identifier.citedreferenceDe Jonge M, Teuchies J, Meire P, Blust R, Bervoets L. 2012. The impact of increased oxygen conditions on metal‐contaminated sediments. Part I: Effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46: 2205 – 2214.
dc.identifier.citedreferenceDi Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26: 96 – 101.
dc.identifier.citedreferenceDi Toro DM, McGrath JA, Hansen DJ, Berry WJ, Paquin PR, Mathew R, Wu KB, Santore RC. 2005. Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application. Environ Toxicol Chem 24: 2410 – 2427.
dc.identifier.citedreferenceFetters KJ, Costello DM, Hammerschmidt CR, Burton GA. 2016. Toxicological effects of short‐term resuspension of metal‐contaminated freshwater and marine sediments. Environ Toxicol Chem 35: 676 – 686.
dc.identifier.citedreferenceHong YS, Kinney KA, Reible DD. 2011. Effects of cyclic changes in pH and salinity on metals release from sediments. Environ Toxicol Chem 30: 1775 – 1784.
dc.identifier.citedreferenceHutchins CM, Teasdale PR, Lee SY, Simpson SL. 2008. Cu and Zn concentration gradients created by dilution of pH neutral metal‐spiked marine sediment: A comparison of sediment geochemistry with direct methods of metal addition. Environ Sci Technol 42: 2912 – 2918.
dc.identifier.citedreferenceHutchins C, Teasdale P, Lee S, Simpson S. 2009. The effect of sediment type and pH‐adjustment on the porewater chemistry of copper‐ and zinc‐spiked sediments. Soil Sediment Contam 18: 55 – 73.
dc.identifier.citedreferenceMacDonald DD, Ingersoll CG, Berger TA. 2000. Development and evaluation of consensus‐based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39: 20 – 31.
dc.identifier.citedreferenceMendonca RM, Daley JM, Hudson ML, Schlekat CE, Burton GA, Costello DM. 2017. Metal oxides in surface sediment control nickel bioavailability to benthic macroinvertebrates. Environ Sci Technol 51: 13407 – 13416.
dc.identifier.citedreferenceNeumann PTM, Borgmann U, Norwood W. 1999. Effect of gut clearance on metal body concentrations in Hyalella azteca. Environ Toxicol Chem 18: 976 – 984.
dc.identifier.citedreferenceNguyen LTH, Roman YE, Vandegehuchte MB, Janssen CR. 2005. Ecotoxicity of zinc to the amphipod Hyalella azteca tested in natural freshwater sediment: Final report submitted to International Lead Zinc Research Organisation. Ghent, Belgium.
dc.identifier.citedreferenceR Core Development Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRemaili TM, Simpson SL, Amato ED, Spadaro DA, Jarolimek CV, Jolley DF. 2016. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment. Environ Pollut 208: 590 – 599.
dc.identifier.citedreferenceRemaili TM, Simpson SL, Jolley DEF. 2017. Effects of enhanced bioturbation intensities on the toxicity assessment of legacy‐contaminated sediments. Environ Pollut 226: 335 – 345.
dc.identifier.citedreferenceRoman YE, De Schamphelaere KAC, Nguyen LTH, Janssen CR. 2007. Chronic toxicity of copper to five benthic invertebrates in laboratory‐formulated sediment: Sensitivity comparison and preliminary risk assessment. Sci Total Environ 387: 128 – 140.
dc.identifier.citedreferenceSimpson SL, Apte SC, Batley GE. 1998. Effect of short‐term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32: 620 – 625.
dc.identifier.citedreferenceSimpson SL, Angel BM, Jolley DF. 2004. Metal equilibration in laboratory‐contaminated (spiked) sediments used for the development of whole‐sediment toxicity tests. Chemosphere 54: 597 – 609.
dc.identifier.citedreferenceSimpson SL, Ward D, Strom D, Jolley DF. 2012. Oxidation of acid‐volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere 88: 953 – 961.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2000. Methods for measuring the toxicity and bioaccumulation of sediment‐associated contaminants with freshwater invertebrates. Washington DC.
dc.identifier.citedreferenceUS Environmental Protection Agency. 2005. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver and zinc). Washington, DC.
dc.identifier.citedreferenceWelton JS, Clarke RT. 1980. Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49: 581 – 592.
dc.identifier.citedreferenceKostka J, Luther G. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim Cosmochim Acta 58: 1701 – 1710.
dc.identifier.citedreferenceAdams SM. 2005. Assessing cause and effect of multiple stressors on marine systems. Mar Pollut Bull 51: 649 – 657.
dc.identifier.citedreferenceAllen HE, Fu G, Deng B. 1993. Analysis of acid‐volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12: 1441 – 1453.
dc.identifier.citedreferenceASTM International. 2010. Standard test method for measuring the toxicity of sediment‐associated contaminants with freshwater invertebrates. E1706‐19. In Annual Book of ASTM Standards, Vol 11.06. Philadelphia, PA, USA.
dc.identifier.citedreferenceAtkinson CA, Jolley DF, Simpson SL. 2007. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69: 1428 – 1437.
dc.identifier.citedreferenceBesser JM, Brumbaugh WG, Ingersoll CG, Ivey CD, Kunz JL, Kemble NE, Schlekat CE, Garman ER. 2013. Chronic toxicity of nickel‐spiked freshwater sediments: Variation in toxicity among eight invertebrate taxa and eight sediments. Environ Toxicol Chem 32: 2495 – 2506.
dc.identifier.citedreferenceBesser JM, Brumbaugh WG, Ivey CD, Ingersoll CG, Moran PW. 2008. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Arch Environ Contam Toxicol 54: 557 – 570.
dc.identifier.citedreferenceBrumbaugh WG, May T, Besser JM, Allert A, Schmitt C. 2007. Assessment of elemental concentrations in streams of the New Lead Belt in southeastern Missouri 2002‐05. Scientific Investigations Report 2007–5057. US Geological Survey. Reston, VA, USA, pp 1–57.
dc.identifier.citedreferenceBrumbaugh WG, Besser JM, Ingersoll CG, May TW, Ivey CD, Schlekat CE, Garman ER. 2013. Preparation and characterization of nickel‐spiked freshwater sediments for toxicity tests: Toward more environmentally realistic nickel partitioning. Environ Toxicol Chem 32: 2482 – 2494.
dc.identifier.citedreferenceBurton GA, Chapman PM, Smith EP. 2002. Weight‐of‐evidence approaches for assessing ecosystem impairment. Hum Ecol Risk Assess 8: 1657 – 1673.
dc.identifier.citedreferenceBurton GA, Nguyen LTH, Janssen C, Baudo R, McWilliam RA, Bossuyt B, Beltrami M, Green A. 2005. Field validation of sediment zinc toxicity. Environ Toxicol Chem 24: 541 – 553.
dc.identifier.citedreferenceCampbell PGC, Tessier A. 1996. Ecotoxicology of metals in the aquatic environment: Geochemical aspects In Newman MC, Jagoe CH, eds, Ecotoxicology: A Hierarchical Treatment. CRC, New York, NY, USA, Pages 11 – 58.
dc.identifier.citedreferenceChapman P, Wang F. 1998. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55: 2221 – 2243.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.