Show simple item record

For common community phylogenetic analyses, go ahead and use synthesis phylogenies

dc.contributor.authorLi, Daijiang
dc.contributor.authorTrotta, Lauren
dc.contributor.authorMarx, Hannah E.
dc.contributor.authorAllen, Julie M.
dc.contributor.authorSun, Miao
dc.contributor.authorSoltis, Douglas E.
dc.contributor.authorSoltis, Pamela S.
dc.contributor.authorGuralnick, Robert P.
dc.contributor.authorBaiser, Benjamin
dc.date.accessioned2019-09-30T15:31:48Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:31:48Z
dc.date.issued2019-09
dc.identifier.citationLi, Daijiang; Trotta, Lauren; Marx, Hannah E.; Allen, Julie M.; Sun, Miao; Soltis, Douglas E.; Soltis, Pamela S.; Guralnick, Robert P.; Baiser, Benjamin (2019). "For common community phylogenetic analyses, go ahead and use synthesis phylogenies." Ecology 100(9): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/151322
dc.description.abstractShould we build our own phylogenetic trees based on gene sequence data, or can we simply use available synthesis phylogenies? This is a fundamental question that any study involving a phylogenetic framework must face at the beginning of the project. Building a phylogeny from gene sequence data (purpose‐built phylogeny) requires more effort, expertise, and cost than subsetting an already available phylogeny (synthesis‐based phylogeny). However, we still lack a comparison of how these two approaches to building phylogenetic trees influence common community phylogenetic analyses such as comparing community phylogenetic diversity and estimating trait phylogenetic signal. Here, we generated three purpose‐built phylogenies and their corresponding synthesis‐based trees (two from Phylomatic and one from the Open Tree of Life, OTL). We simulated 1,000 communities and 12,000 continuous traits along each purpose‐built phylogeny. We then compared the effects of different trees on estimates of phylogenetic diversity (alpha and beta) and phylogenetic signal (Pagel’s λ and Blomberg’s K). Synthesis‐based phylogenies generally yielded higher estimates of phylogenetic diversity when compared to purpose‐built phylogenies. However, resulting measures of phylogenetic diversity from both types of phylogenies were highly correlated (Spearman’s ρ > 0.8 in most cases). Mean pairwise distance (both alpha and beta) is the index that is most robust to the differences in tree construction that we tested. Measures of phylogenetic diversity based on the OTL showed the highest correlation with measures based on the purpose‐built phylogenies. Trait phylogenetic signal estimated with synthesis‐based phylogenies, especially from the OTL, was also highly correlated with estimates of Blomberg’s K or close to Pagel’s λ from purpose‐built phylogenies when traits were simulated under Brownian motion. For commonly employed community phylogenetic analyses, our results justify taking advantage of recently developed and continuously improving synthesis trees, especially the Open Tree of Life.
dc.publisherRoberts Co.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphylogenetic signal
dc.subject.othertrait
dc.subject.otheralpha diversity
dc.subject.otheropen tree of life
dc.subject.othercommunity phylogenetic structure
dc.subject.otherbeta diversity
dc.subject.otherphylogenetic diversity
dc.titleFor common community phylogenetic analyses, go ahead and use synthesis phylogenies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151322/1/ecy2788_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151322/2/ecy2788.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151322/3/ecy2788-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ecy.2788
dc.identifier.sourceEcology
dc.identifier.citedreferencePons, J., T. G. Barraclough, J. Gomez‐Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin, and A. P. Vogler. 2006. Sequence‐based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595 – 609.
dc.identifier.citedreferenceLi, D., and D. M. Waller. 2017. Fire exclusion and climate change interact to affect long‐term changes in the functional composition of plant communities. Diversity and Distributions 23: 496 – 506.
dc.identifier.citedreferenceLi, D., A. R. Ives, and D. M. Waller. 2017. Can functional traits account for phylogenetic signal in community composition? New Phytologist 214: 607 – 618.
dc.identifier.citedreferenceLozupone, C., and R. Knight. 2005. UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228 – 8235.
dc.identifier.citedreferenceMaherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316: 1746 – 1748.
dc.identifier.citedreferenceMarx, H. E., C. Dentant, J. Renaud, R. Delunel, D. C. Tank, and S. Lavergne. 2017. Riders in the sky (islands): Using a mega‐phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. Journal of Biogeography 44: 2618 – 2630.
dc.identifier.citedreferenceMiller, E. T., D. R. Farine, and C. H. Trisos. 2017. Phylogenetic community structure metrics and null models: A review with new methods and software. Ecography 40: 461 – 477.
dc.identifier.citedreferenceMolina‐Venegas, R., and M. Á. Rodriguez. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology 17: 53.
dc.identifier.citedreferenceMünkemüller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schiffers, and W. Thuiller. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3: 743 – 756.
dc.identifier.citedreferencePagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877.
dc.identifier.citedreferenceParadis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289 – 290.
dc.identifier.citedreferencePark, D. S., S. Worthington, and Z. Xi. 2018. Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Molecular Ecology 27: 1296 – 1308.
dc.identifier.citedreferencePatrick, L. E., and R. D. Stevens. 2014. Investigating sensitivity of phylogenetic community structure metrics using North American desert bats. Journal of Mammalogy 95: 1240 – 1253.
dc.identifier.citedreferencePearse, W. D., and A. Purvis. 2013. PhyloGenerator: An automated phylogeny generation tool for ecologists. Methods in Ecology and Evolution 4: 692 – 698.
dc.identifier.citedreferenceStamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
dc.identifier.citedreferenceQian, H., and J. Zhang. 2016. Are phylogenies derived from family‐level supertrees robust for studies on macroecological patterns along environmental gradients? Journal of Systematics and Evolution 54: 29 – 36.
dc.identifier.citedreferenceR Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org
dc.identifier.citedreferenceRabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4: 1958.
dc.identifier.citedreferenceRonquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572 – 1574.
dc.identifier.citedreferenceSmith, M. A., W. Hallwachs, and D. H. Janzen. 2014. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37: 720 – 731.
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Mega‐phylogeny approach for comparative biology: An alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37.
dc.identifier.citedreferenceSmith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302 – 314.
dc.identifier.citedreferenceSwenson, N. G. 2009. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4: e4390.
dc.identifier.citedreferenceTrotta, L., B. Baiser, J. Possley, D. Li, J. Lange, S. Martin, and E. Sessa. 2018. Community phylogeny of the globally critically imperiled pine rockland ecosystem. American Journal of Botany 105: 1735 – 1747.
dc.identifier.citedreferenceTsirogiannis, C., and B. Sandel. 2016. PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39: 709 – 714.
dc.identifier.citedreferenceTucker, C. M., M. W. Cadotte, S. B. Carvalho, T. J. Davies, S. Ferrier, S. A. Fritz, R. Grenyer, M. R. Helmus, L. S. Jin, and A. O. Mooers. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92: 698 – 715.
dc.identifier.citedreferenceVamosi, S., S. Heard, J. Vamosi, and C. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18: 572 – 592.
dc.identifier.citedreferenceWebb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475 – 505.
dc.identifier.citedreferenceWebb, C. O., D. D. Ackerly, and S. W. Kembel. 2008. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098 – 2100.
dc.identifier.citedreferenceWebb, C. O., and M. J. Donoghue. 2005. Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Resources 5: 181 – 183.
dc.identifier.citedreferenceWikström, N., V. Savolainen, and M. W. Chase. 2001. Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B 268: 2211 – 2220.
dc.identifier.citedreferenceZanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O’Meara, A. T. Moles, and P. B. Reich. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.
dc.identifier.citedreferenceForest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, Ş. Procheş, and M. van der Bank. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757 – 760.
dc.identifier.citedreferenceFritz, S. A., O. R. Bininda‐Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecology Letters 12: 538 – 549.
dc.identifier.citedreferenceHebert, P. D., E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812 – 14817.
dc.identifier.citedreferenceAllen, J. M. et al. 2019. Spatial phylogenetics of florida vascular plants: The effects of calibration and uncertainty on diversity estimates. IScience 11: 57 – 70.
dc.identifier.citedreferenceAntonelli, A., H. Hettling, F. L. Condamine, K. Vos, R. H. Nilsson, M. J. Sanderson, H. Sauquet, R. Scharn, D. Silvestro, and M. Töpel. 2017. Toward a self‐updating platform for estimating rates of speciation and migration, ages, and relationships of taxa. Systematic Biology 66: 152 – 166.
dc.identifier.citedreferenceAPG III. 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 – 121.
dc.identifier.citedreferenceAPG IV et al. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20.
dc.identifier.citedreferenceBaum, D. A., and S. D. Smith. 2012. Tree thinking: An introduction to phylogenetic biology. Roberts Co., Greenwood Village, Colorado, USA.
dc.identifier.citedreferenceBininda‐Emonds, O. R., M. Cardillo, K. E. Jones, R. D. MacPhee, R. M. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. 2007. The delayed rise of present‐day mammals. Nature 446: 507.
dc.identifier.citedreferenceBlomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717 – 745.
dc.identifier.citedreferenceBoyle, E. E., and S. J. Adamowicz. 2015. Community phylogenetics: Assessing tree reconstruction methods and the utility of DNA barcodes. PLoS ONE 10: e0126662.
dc.identifier.citedreferenceCadotte, M. W. 2015. Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Functional Ecology 29: 718 – 723.
dc.identifier.citedreferenceCardillo, M. 2011. Phylogenetic structure of mammal assemblages at large geographical scales: Linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B 366: 2545 – 2553.
dc.identifier.citedreferenceCavender‐Bares, J., and P. B. Reich. 2012. Shocks to the system: Community assembly of the oak savanna in a 40‐year fire frequency experiment. Ecology 93: S52 – S69.
dc.identifier.citedreferenceCavender‐Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: S109 – S122.
dc.identifier.citedreferenceCavender‐Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693 – 715.
dc.identifier.citedreferenceDavies, T. J., N. J. Kraft, N. Salamin, and E. M. Wolkovich. 2012. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology 93: 242 – 247.
dc.identifier.citedreferenceDrummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
dc.identifier.citedreferenceEastman, J. M., L. J. Harmon, and D. C. Tank. 2013. Congruification: Support for time scaling large phylogenetic trees. Methods in Ecology and Evolution 4: 688 – 691.
dc.identifier.citedreferenceEdgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792 – 1797.
dc.identifier.citedreferenceFaith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1 – 10.
dc.identifier.citedreferenceHelmus, M. R., K. Savage, M. W. Diebel, J. T. Maxted, and A. R. Ives. 2007. Separating the determinants of phylogenetic community structure. Ecology Letters 10: 917 – 925.
dc.identifier.citedreferenceHinchliff, C. E., S. A. Smith, J. F. Allman, J. G. Burleigh, R. Chaudhary, L. M. Coghill, K. A. Crandall, J. Deng, B. T. Drew, and R. Gazis. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences 112: 12764 – 12769.
dc.identifier.citedreferenceIves, A. R., and M. R. Helmus. 2010. Phylogenetic metrics of community similarity. American Naturalist 176: E128 – E142.
dc.identifier.citedreferenceJetz, W., G. Thomas, J. Joy, K. Hartmann, and A. Mooers. 2012. The global diversity of birds in space and time. Nature 491: 444 – 448.
dc.identifier.citedreferenceKumar, S., G. Stecher, M. Suleski, and S. B. Hedges. 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812 – 1819.
dc.identifier.citedreferenceLanfear, R., B. Calcott, S. Y. Ho, and S. Guindon. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695 – 1701.
dc.identifier.citedreferenceLavergne, S., N. Mouquet, W. Thuiller, and O. Ronce. 2010. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics 41: 321 – 350.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.