Show simple item record

MESSENGER Observations of Disappearing Dayside Magnetosphere Events at Mercury

dc.contributor.authorSlavin, J. A.
dc.contributor.authorMiddleton, H. R.
dc.contributor.authorRaines, J. M.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorZhong, J.
dc.contributor.authorSun, W.‐j.
dc.contributor.authorLivi, S.
dc.contributor.authorImber, S. M.
dc.contributor.authorPoh, G.‐k.
dc.contributor.authorAkhavan‐tafti, M.
dc.contributor.authorJasinski, J. m.
dc.contributor.authorDiBraccio, G. A.
dc.contributor.authorDong, C.
dc.contributor.authorDewey, R. M.
dc.contributor.authorMays, M. L.
dc.date.accessioned2019-10-30T15:29:55Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:29:55Z
dc.date.issued2019-08
dc.identifier.citationSlavin, J. A.; Middleton, H. R.; Raines, J. M.; Jia, Xianzhe; Zhong, J.; Sun, W.‐j. ; Livi, S.; Imber, S. M.; Poh, G.‐k. ; Akhavan‐tafti, M. ; Jasinski, J. m. ; DiBraccio, G. A.; Dong, C.; Dewey, R. M.; Mays, M. L. (2019). "MESSENGER Observations of Disappearing Dayside Magnetosphere Events at Mercury." Journal of Geophysical Research: Space Physics 124(8): 6613-6635.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/151837
dc.description.abstractMErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) measurements taken during passes over Mercury’s dayside hemisphere indicate that on four occasions the spacecraft remained in the magnetosheath even though it reached altitudes below 300 km. During these disappearing dayside magnetosphere (DDM) events, the spacecraft did not encounter the magnetopause until it was at very high magnetic latitudes, ~66 to 80°. These DDM events stand out with respect to their extremely high solar wind dynamic pressures, Psw ~140 to 290 nPa, and intense southward magnetic fields, Bz ~ â 100 to â 400 nT, measured in the magnetosheath. In addition, the bow shock was observed very close to the surface during these events with a subsolar altitude of ~1,200 km. It is suggested that DDM events, which are closely associated with coronal mass ejections, are due to solar wind compression and/or reconnectionâ driven erosion of the dayside magnetosphere. The very low altitude of the bow shock during these events strongly suggests that the solar wind impacts much of Mercury’s sunlit hemisphere during these events. More study of these disappearing dayside events is required, but it is likely that solar wind sputtering of neutrals from the surface into the exosphere maximizes during these intervals.Key PointsThe dayside magnetosphere of Mercury is observed to disappear at MESSENGER’s orbit during some coronal mass ejection impactsThe cause appears to be extreme solar wind compression and/or reconnectionâ driven erosion of Mercury’s dayside magnetic fieldThe low altitude of the bow shock during these events strongly suggests that Mercury’s dayside surface experiences direct solar wind impact
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.othercoronal mass ejections
dc.subject.othermagnetosphere
dc.subject.otherexosphere
dc.subject.otherreconnection
dc.subject.otherinduction
dc.subject.otherMercury
dc.titleMESSENGER Observations of Disappearing Dayside Magnetosphere Events at Mercury
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151837/1/jgra55069.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151837/2/jgra55069_am.pdf
dc.identifier.doi10.1029/2019JA026892
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., Elphic, R. C., Russell, C. T., Scarf, F. L., Wolfe, J. H., Mihalov, J. D., Intriligator, D. S., Brace, L. H., Taylor, H. A. Jr., & Daniell, R. E. Jr. ( 1980 ). The solar wind interaction with Venus: Pioneer Venus Observations of bow shock location and structure. Journal of Geophysical Research, 85 ( A13 ), 7625. https://doi.org/10.1029/JA085iA13p07625
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1984 ). A survey of dayside flux transfer events observed by ISEEâ 1 and ISEEâ 2 magnetometers. Journal of Geophysical Research, 89 ( A2 ), 786 â 800. https://doi.org/10.1029/JA89iA02p00786
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 â 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceShue, J. â H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102 ( A5 ), 9497 â 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceSiscoe, G., & Christopher, L. ( 1975 ). Variations in the solar wind standâ off distance at Mercury. Geophysical Research Letters, 2 ( 4 ), 158 â 160. https://doi.org/10.1029/GL002i004p00158
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., TrávnÃ­Ä ek, P. M., & Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 â 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Zurbuchen, T. H., Baker, D. N., Krimigis, S. M., Acuña, M. H., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., & TrávnÃ­Ä ek, P. ( 2009 ). MESSENGER observations of Mercury’s magnetosphere during northward IMF. Geophysical Research Letters, 36, L02101. https://doi.org/10.1029/2008GL036158
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Gershman, D. J., Ho, G., Imber, S. M., Krimigis, S. M., & Sundberg, T. ( 2019 ). Mercury’s dynamic magnetosphere. In S. C. L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Chapter 17, pp. 461 â 496 ). London: Cambridge Univ. Press. ISBN: 978â 1107154452
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S., Poh, G. K., Raines, J., Zurbuchen, T. H., Jia, X., Baker, D. N., Boardsen, S. A., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., Ho, G., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 â 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., Fairfield, D. H., Lepping, R. P., Szabo, A., Reiner, M. J., Kaiser, M., Owen, C. J., Phan, T., Lin, R., Kokubun, S., Mukai, T., Yamamoto, T., Singer, H., Romanov, S., Buechner, J., Iyemori, T., & Rostoker, G. ( 1997 ). WIND, Geotail and GOES 9 observations of magnetic field dipolarization and bursty bulk flows in the nearâ tail. Geophysical Research Letters, 24 ( 8 ), 971 â 974. https://doi.org/10.1029/97GL00542
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1979 ). The effect of erosion on the solar wind standâ off distance at Mercury. Journal of Geophysical Research, 84 ( A5 ), 2076 â 2,082. https://doi.org/10.1029/JA084iA05p02076
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11401 â 11,418. https://doi.org/10.1029/JA086iA13p11401
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nievesâ Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raine, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of a flux transfer shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSlavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., & Akasofu, S.â I. ( 1985 ). An ISEEâ 3 study of average and substorm conditions in the distant magnetotail. Journal of Geophysical Research, 90 ( A11 ), 10,875 â 10,895. https://doi.org/10.1029/JA090iA11p10875
dc.identifier.citedreferenceSmith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.â L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W., & Taylor, A. H. ( 2012 ). Gravity field and internal structure of Mercury from MESSENGER. Science, 336 ( 6078 ), 214 â 217. https://doi.org/10.1126/science.1218809
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L. Jr., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1â 4 ), 3 â 39. https://doi.org/10.1007/s11214â 007â 9247â 6
dc.identifier.citedreferenceSonnerup, B. U. Ã . ( 1974 ). Magnetopause reconnection rate. Journal of Geophysical Research, 79, 1546 â 1549, https://doi.org/10.1029/JA079i010p01546
dc.identifier.citedreferenceSonnerup, B. U. à ., Papmastorakis, I., Paschmann, G., & Lühr, H. ( 1990 ). The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM. Journal of Geophysical Research, 95, 10,541 â 10,557. https://doi.org/10.1029/JA095iA07p10541
dc.identifier.citedreferenceSpreiter, J. R., Summers, A. L., & Alksne, A. Y. ( 1966 ). Hydromagnetic flow around the magnetosphere. Planetary and Space Science, 14, 223 â 253. https://doi.org/10.1016/0032â 0633(66)90124â 3
dc.identifier.citedreferenceSuess, S. T., & Goldstein, B. E. ( 1979 ). Compression of the Hermaean magnetosphere by the solar wind. Journal of Geophysical Research, 84 ( A7 ), 3306 â 3312. https://doi.org/10.1029/JA084iA07p03306
dc.identifier.citedreferenceTanskanen, E. I. ( 2009 ). A comprehensive highâ throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993â 2003 examined. Journal of Geophysical Research, 114, A05204. https://doi.org/10.1029/2008JA013682
dc.identifier.citedreferenceToth, G., & Odstrcil, D. ( 1996 ). Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. Journal of Computational Physics, 128 ( 1 ), 82 â 100. https://doi.org/10.1006/jcph.1996.0197
dc.identifier.citedreferenceTrávnÃ­Ä ek, P. M., Hellinger, P., Schriver, D., HerÄ Ã­k, D., Slavin, J. A., & Anderson, B. J. ( 2009 ). Kinetic instabilities in Mercury’s magnetosphere: Threeâ dimensional simulation results. Geophysical Research Letters, 36, L07104. https://doi.org/10.1029/2008GL036630
dc.identifier.citedreferenceTrávnÃ­Ä ek, P. M., Schriver, D., Hellinger, P., HerÄ Ã­k, D., Anderson, B. J., Sarantos, M., & Slavin, J. A. ( 2010 ). Mercury’s magnetosphereâ solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulations. Icarus, 209 ( 1 ), 11 â 22. https://doi.org/10.1016/j.icarus.2010.01.008
dc.identifier.citedreferenceTrenchi, L., Marcucci, M. F., Rème, H., Carr, C. M., & Cao, J. B. ( 2011 ). TCâ 1 observations of a flux rope: Generation by multiple X line reconnection. Geophysical Research Letters, 116, A05202. https://doi.org/10.1029/2010JA015986
dc.identifier.citedreferenceVarela, J., Pantellini, F., & Moncuquet, M. ( 2015 ). The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury’s surface. Planetary and Space Science, 119, 264 â 269. https://doi.org/10.1016/l.pss.2015.10.004
dc.identifier.citedreferenceWang, Y. C., Motschmann, U., Müller, J., & Ip, W. H. ( 2010 ). A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus, 209, 46 â 52.
dc.identifier.citedreferenceWebster, J. M., Burch, J. L., Reiff, P. H., Daou, A. G., Genestreti, K. J., Graham, D. B., Torbert, R. B., Ergun, R. E., Sazykin, S. Y., Marshall, A., Allen, R. C., Chen, L. J., Wang, S., Phan, T. D., Giles, B. L., Moore, T. E., Fuselier, S. A., Cozzani, G., Russell, C. T., Eriksson, S., Rager, A. C., Broll, J. M., Goodrich, K., & Wilder, F. ( 2018 ). Magnetospheric Multiscale dayside reconnection electron diffusion region events. Journal of Geophysical Research: Space Physics, 123, 4858 â 4878. https://doi.org/10.1029/2018JA025245
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 2213 â 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceWinslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E., & Solomon, S. C. ( 2012 ). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophysical Research Letters, 39, L08112. https://doi.org/10.1029/2012GL051472
dc.identifier.citedreferenceWinslow, R. M., N. Lugaz, C. J. Farrugia, C. L. Johnson, B. J. Anderson, C. S. Paty, N. A. Schwadron, L. Philpott, M. Al Asad, First observations of an ICME compressing Mercury’s dayside magnetosphere to the surface, arXiv:1903.00577v1 ( 2019 ).
dc.identifier.citedreferenceWinslow, R. M., Winslow, R. M., Lugaz, N., Philpott, L. C., Schwadron, N. A., Farrugia, C. J., Anderson, B. J., & Smith, C. W. ( 2015 ). Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. Journal of Geophysical Research: Space Physics, 120, 6101 â 6118. https://doi.org/10.1002/2015JA021200
dc.identifier.citedreferenceZhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., Raines, J. M., Rong, Z. J., & Han, X. H. ( 2015 ). Mercury’s threeâ dimensional asymmetric magnetopause. Journal of Geophysical Research: Space Physics, 120, 7658 â 7671. https://doi.org/10.1002/2015JA021425
dc.identifier.citedreferenceZhong, J., Wan, W. X., Wei, Y., Slavin, J. A., Raines, J. M., Rong, Z. J., Chai, L. H., & Han, X. H. ( 2015 ). Compressibility of Mercury’s dayside magnetosphere. Geophysical Research Letters, 42, 10,135 â 10,139. https://doi.org/10.1002/2015GL067063
dc.identifier.citedreferenceZong, Q.â G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.â H., Korth, A., Daly, P. W., Balogh, A., & Reme, H. ( 2005 ). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophysical Research Letters, 32, L01101. https://doi.org/10.1029/2004GL020960
dc.identifier.citedreferenceZwan, B. J. & Wolf, R. A. ( 1976 ). Depletion of solar wind plasmanear a planetary boundary. Journal of Geophysical Research, 81, 1636 â 1648. https://doi.org/10.1029/JA081i010p01636
dc.identifier.citedreferenceBorovsky, J. E., Nemzek, R. J., & Belian, R. D. ( 1993 ). The occurrence rate of magnetosphericâ substorm onsets: Random and periodic substorms. Journal of Geophysical Research, 98 ( A3 ), 3807 â 3813. https://doi.org/10.1029/92JA02556
dc.identifier.citedreferenceAkhavanâ Tafti, M., Slavin, J. A., le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., & Burch, J. L. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 â 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceAlexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M., & Solomon, S. C. ( 2010 ). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209 ( 1 ), 23 â 39. https://doi.org/10.1016/j.icarus.2010.01.024
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The Magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1â 4 ), 417 â 450. https://doi.org/10.1007/s11214â 007â 9246â 7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 â 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. ( 2007 ). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1â 4 ), 523 â 556. https://doi.org/10.1007/s11214â 007â 9272â 5
dc.identifier.citedreferenceBaker, D. N., Odstrcil, D., Anderson, B. J., Arge, C. N., Benna, M., Gloeckler, G., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Killen, R. M., & Zurbuchen, T. H. ( 2009 ). Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions. Journal of Geophysical Research, 114, A10101. https://doi.org/10.1029/2009JA014287
dc.identifier.citedreferenceBaker, D. N., Poh, G. K., Odstrcil, D., Arge, C. N., Benna, M., Johnson, C. L., Korth, H., Gershman, D. J., Ho, G. C., McClintock, W. E., Cassidy, T. A., Merkel, A., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., TrávnÃ­Ä ek, P. M., Winslow, R. M., & Zurbuchen, T. H. ( 2013 ). Solar wind forcing at Mercury: WSAâ ENLIL model results. Journal of Geophysical Research: Space Physics, 118, 45 â 57. https://doi.org/10.1029/2012JA018064
dc.identifier.citedreferenceBenna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L. Jr., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C., & Zurbuchen, T. H. ( 2010 ). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209 ( 1 ), 3 â 10. https://doi.org/10.1016/j.icarus.2009.11.036
dc.identifier.citedreferenceChapman, S., & Ferraro, V. C. A. ( 1932 ). A new theory of magnetic storms, pt. 1, The initial phase. Terre Magazine, 37 ( 2 ), 147 â 156. https://doi.org/10.1029/TE037i002p00147
dc.identifier.citedreferenceCooling, B. M. A., Owen, C. J., & Schwartz, S. J. ( 2001 ). Role of the magnetosheath flow in determining the motion of open flux tubes. Journal of Geophysical Research, 106 ( A9 ), 18,763 â 18,775. https://doi.org/10.1029/2000JA000455
dc.identifier.citedreferenceCrider, D. H., Vignes, D., Krymskii, A. M., Breus, T. K., Ness, N. F., Mitchell, D. L., Slavin, J. A., & Acuña, M. ( 2003 ). A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. Journal of Geophysical Research, 108 ( A12 ), 1461. https://doi.org/10.1029/2003JA009875
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. ( 2018 ). MESSENGER observations of fast plasmaflows in Mercury’s magnetotail. Geophysical Research Letters, 45, 10,110 â 10,118. https://doi.org/10.1029/2018GL079056
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 â 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, J. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42, 9666 â 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceDomingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., TrávnÃ­Ä ek, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillisâ Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R., & McClintock, W. E. ( 2014 ). Mercury’s weatherâ beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181, 121 â 214.
dc.identifier.citedreferenceDong, C. F., Lingam, M., Ma, Y. J., & Cohen, O. ( 2017 ). Is Proxima Centauri B habitable? A study of Atmospheric Loss. The Astrophysical Journal, 837, L26.
dc.identifier.citedreferenceDong, C. F., L. Wang, A. Hakim, A. Bhattacharjee, J. A. Slavin, G. A. DiBraccio, K. Germaschewski, A novel tenâ moment multifluid model for Mercury: From the planetary conducting core to the dynamic magnetosphere, arXiv:1904.02695 ( 2019 ).
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 â 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceExner, X., Heyner, D., Liuzzo, L., Motschmann, U., Shiota, D., Kusano, K., & Shibayama, T. ( 2018 ). Coronal mass ejection hits mercury: A.I.K.E.F. hybridâ code results compared to MESSENGER data. Planetary and Space Science, 153, 89 â 99. https://doi.org/10.1016/j.pss.2017.12.016
dc.identifier.citedreferenceFear, R. C., Milan, S. E., Fazakerley, A. N., Owen, C. J., Asikainen, T., Taylor, M. G. G. T., Lucek, E. A., Rème, H., Dandouras, I., & Daly, P. W. ( 2007 ). Motion of flux transfer events: A test of the Cooling model. Annals of Geophysics, 25 ( 7 ), 1669 â 1690. https://doi.org/10.5194/angeoâ 25â 1669â 2007
dc.identifier.citedreferenceGershman, D. J., Dorelli, J. C., DiBraccio, G. A., Raines, J. M., Slavin, J. A., Poh, G., & Zurbuchen, T. H. ( 2016 ). Ionâ scale structure in Mercury’s magnetopause reconnection diffusion region. Geophysical Research Letters, 43, 5935 â 5942. https://doi.org/10.1002/2016GL069163
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 â 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., Smith, C. W., Korth, H. & Solomon, S. C. ( 2012 ). Solar wind alpha particles and heavyions in the inner heliosphere. Journal of Geophysical Research, 117, A00M02. https://doi.org/10.1029/2012JA017829
dc.identifier.citedreferenceGlassmeier, K.â H., Grosser, J., Auster, U., Constantinescu, D., Narita, Y., & Stellmach, S. ( 2007 ). Electromagnetic induction effects and dynamo action in the Hermean system. Space Science Reviews, 132 ( 2â 4 ), 511 â 527. https://doi.org/10.1007/s11214â 007â 9244â 9
dc.identifier.citedreferenceHasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q.â H., Lavraud, B., Taylor, M. G. G. T., Constantinescu, O. D., Berchem, J., Angelopoulos, V., McFadden, J. P., Frey, H. U., Panov, E. V., Volwerk, M., & Bogdanova, Y. V. ( 2010 ). Evidence for a flux transfer event generated by multiple Xâ line reconnection at the magnetopause. Geophysical Research Letters, 37, L16101. https://doi.org/10.1029/2010GL044219
dc.identifier.citedreferenceHeyner, D., Nabert, C., Liebert, E., & Glassmeier, K.â H. ( 2016 ). Concerning reconnectionâ induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121, 2935 â 2961. https://doi.org/10.1002/2015JA021484
dc.identifier.citedreferenceHolzer, R. E., & Slavin, J. A. ( 1978 ). Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere. Journal of Geophysical Research, 83 ( A8 ), 3831. https://doi.org/10.1029/JA083iA08p03831
dc.identifier.citedreferenceHood, L., & Schubert, G. ( 1979 ). Inhibition of solar wind impingement on Mercury by planetary induction currents. Journal of Geophysical Research, 84 ( A6 ), 2641 â 2647. https://doi.org/10.1029/JA084iA06p02641
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? Journal of Geophysical Research: Space Physics, 119, 5613 â 5623. https://doi.org/10.1002/2014JA019884
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading:  Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 â 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceJanhunen, P., & Kallio, E. ( 2004 ). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Annals of Geophysics, 22 ( 5 ), 1829 â 1837. https://doi.org/10.5194/angeoâ 22â 1829â 2004
dc.identifier.citedreferenceJasinski, J. M., Slavin, J. A., Raines, J. M., & DiBraccio, G. A. ( 2017 ). Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with MESSENGER. Journal of Geophysical Research: Space Physics, 122, 12,153 â 12,169. https://doi.org/10.1002/2017JA024594
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 â 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., Raines, J. M., & Gombosi, T. I. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 â 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceJohnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M., & Solomon, S. C. ( 2016 ). Messenger Observations Of Induced Magnetic Fields In Mercury’s Core. Geophysical Research Letters, 43, 2436 â 2444. https://doi.org/10.1002/2015GL067370
dc.identifier.citedreferenceJohnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I. I., Phillips, R. J., Zuber, M. T., & Solomon, S. C. ( 2012 ). MESSENGER observations of Mercury’s magnetic field structure. Journal of Geophysical Research, 117, E00L14. https://doi.org/10.1029/2012JE004217
dc.identifier.citedreferenceKabin, K., Gombosi, T. I., DeZeeuw, D. L., & Powell, K. G. ( 2000 ). Interaction of Mercury with the solar wind. Icarus, 143 ( 2 ), 397 â 406. https://doi.org/10.1006/icar.1999.6252
dc.identifier.citedreferenceKidder, A., Winglee, R. M., & Harnett, E. M. ( 2008 ). Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. Journal of Geophysical Research, 113, A09223. https://doi.org/10.1029/2008JA013038
dc.identifier.citedreferenceKillen, R. M., Burger, M. H., Vervack, R. J. Jr., & Cassidy, T. A. ( 2019 ). Understanding Mercury’s Exosphere: Models derived from MESSENGER observations, Mercury. In S. C. L. R. Nittler, & B. J. Anderson (Eds.), The View After MESSENGER. London (Chapter 15, pp. 407 â 429 ). ISBN: 978â 1107154452
dc.identifier.citedreferenceKoth, H., Anderson, B. J., Johnson, C. L., Slavin, J. A., Raines, J. M., & Zurbuchen, T. H. ( 2019 ). Structure and configuration of Mercury’s magnetosphere. In S. C. L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Chapter 16 430 â 460 ). London: Cambridge Univ. Press.
dc.identifier.citedreferenceLee, L. C. & Fu, Z. F. ( 1985 ). A theory of magnetic flux transfer at theEarth’s magnetopause. Geophysical Research Letters, 12, 105 â 108.
dc.identifier.citedreferenceLiljeblad, E., Karlsson, T., Raines, J. M., Slavin, J. A., Kullen, A., Sundberg, T., & Zurbuchen, T. H. ( 2015 ). MESSENGER observations of the dayside lowâ latitude boundary layer in Mercury’s magnetosphere. Journal of Geophysical Research: Space Physics, 120, 8387 â 8400. https://doi.org/10.1002/2015JA021662
dc.identifier.citedreferenceMassetti, S., Orsini, S., Milillo, A., Mura, A., deAngelis, E., Lammer, H., & Wurz, P. ( 2003 ). Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166 ( 2 ), 229 â 237. https://doi.org/10.1016/j.icarus.2003.08.005
dc.identifier.citedreferenceMuller, J., Simon, S., Wang, Y.â C., Motschmann, U., Heyner, D., Schüle, J., Ip, W.â H., Keindienst, G., & Pringle, G. J. ( 2012 ). Origin of Mercury’s double magnetopause: 3D hybrid simulation with A.I.K.E.F. Icarus, 218 ( 1 ), 666 â 687. https://doi.org/10.1016/j.icarus.2011.12.028
dc.identifier.citedreferenceNess, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., & Schatten, K. H. ( 1974 ). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185 ( 4146 ), 151 â 160. https://doi.org/10.1126/science.185.4146.151
dc.identifier.citedreferenceOdstrcil, D., Riley, P., & Zhao, X. P. ( 2004 ). Numerical simulation of the 12 May 1997 interplanetary CME event. Journal of Geophysical Research, 109, A02116. https://doi.org/10.1029/2003JA010135
dc.identifier.citedreferenceOgilvie, K. W., Scudder, J. D., Vasyliunas, V. M., Hartle, R. E., & Siscoe, G. L. ( 1977 ). Observations at the planet Mercury by the plasma electron experiment, Mariner 10. Journal of Geophysical Research, 82 ( 13 ), 1807 â 1824. https://doi.org/10.1029/JA082i013p01807
dc.identifier.citedreferencePaschmann, G., Papamastorakis, I., Baumjohann, W., Carlson, B. U., Lühr, H., Sckope, N. W., & Sonnerup, O. ( 1986 ). The magnetopause for large magnetic shear: AMPTE/IRM observations. Journal of Geophysical Research, 91 ( A10 ), 11,099 â 11,115. https://doi.org/10.1029/JA091iA10p11099
dc.identifier.citedreferencePfleger, M., Lichtenegger, H. I. M., Wurtz, P., Lammer, H., Kallio, E., Alho, M., Mura, A., McKennaâ Lawlor, S., & Martinâ Fernandez, J. A. ( 2015 ). 3Dâ modeling of Mercury’s solar wind sputtered surfaceâ exosphere environment. Planetary and Space Science, 115, 90 â 101. https://doi.org/10.1016/j.pss.2015.04.016
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., Imber, S. M., Gershman, D. J., Sun, W. J., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr., & Solomon, S. C. ( 2016 ). MESSENGER observations of cusp plasma filaments at Mercury. Journal of Geophysical Research: Space Physics, 121, 8260 â 8285. https://doi.org/10.1002/2016JA022552
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annals of Geophysics, 24 ( 1 ), 381 â 392. https://doi.org/10.5194/angeoâ 24â 381â 2006
dc.identifier.citedreferenceRaines, J. M., DiBraccio, G. A., Cassidy, T. A., Delcourt, D. C., Fujimoto, M., Jia, X., Mangano, V., Milillo, A., Sarantos, M., Slavin, J. A., & Wurz, P. ( 2015 ). Plasma sources in planetary magnetospheres: Mercury. Space Science Reviews, 192 ( 1â 4 ), 91 â 144. https://doi.org/10.1007/s11214â 015â 0193â 4
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 â 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H. Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M. & McNutt, R. L., Jr. ( 2011 ). MESSENGER observations of theplasma environment near Mercury. Planet. Space Sci., 59, 2004 â 2015. https://doi.org/10.1016/j/pss.2011.02.004
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.