Show simple item record

Deciphering the relative roles of matrix metalloproteinase‐ and plasmin‐mediated matrix degradation during capillary morphogenesis using engineered hydrogels

dc.contributor.authorBeamish, Jeffrey A.
dc.contributor.authorJuliar, Benjamin A.
dc.contributor.authorCleveland, David S.
dc.contributor.authorBusch, Megan E.
dc.contributor.authorNimmagadda, Likitha
dc.contributor.authorPutnam, Andrew J.
dc.date.accessioned2019-10-30T15:30:18Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-10-30T15:30:18Z
dc.date.issued2019-11
dc.identifier.citationBeamish, Jeffrey A.; Juliar, Benjamin A.; Cleveland, David S.; Busch, Megan E.; Nimmagadda, Likitha; Putnam, Andrew J. (2019). "Deciphering the relative roles of matrix metalloproteinase‐ and plasmin‐mediated matrix degradation during capillary morphogenesis using engineered hydrogels." Journal of Biomedical Materials Research Part B: Applied Biomaterials 107(8): 2507-2516.
dc.identifier.issn1552-4973
dc.identifier.issn1552-4981
dc.identifier.urihttps://hdl.handle.net/2027.42/151850
dc.description.abstractExtracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the relative contributions of MMP‐ and plasmin‐mediated ECM remodeling to vessel formation in a 3D‐model of capillary self‐assembly analogous to vasculogenesis. We first demonstrated a role for both MMP‐ and plasmin‐mediated mechanisms of ECM remodeling in an endothelial‐fibroblast co‐culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and plasmin. When this co‐culture model was employed in engineered PEG hydrogels with selective protease sensitivity, we observed robust capillary morphogenesis only in MMP‐sensitive matrices. Fibroblast spreading in plasmin‐selective hydrogels confirmed this difference was due to protease preference by endothelial cells, not due to limitations of the matrix itself. In hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, capillary morphogenesis was unchanged. These findings highlight the critical importance of MMP‐mediated degradation during vasculogenesis and provide strong evidence to justify the preferential selection of MMP‐degradable peptide crosslinkers in synthetic hydrogels used to study vascular morphogenesis and promote vascularization. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2507–2516, 2019.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherpoly(ethylene glycol)
dc.subject.othercapillary morphogenesis
dc.subject.othermatrix metalloproteinase
dc.subject.otherplasmin
dc.subject.otherfibrin
dc.titleDeciphering the relative roles of matrix metalloproteinase‐ and plasmin‐mediated matrix degradation during capillary morphogenesis using engineered hydrogels
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151850/1/jbmb34341_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151850/2/jbmb34341.pdf
dc.identifier.doi10.1002/jbm.b.34341
dc.identifier.sourceJournal of Biomedical Materials Research Part B: Applied Biomaterials
dc.identifier.citedreferenceDaviran M, Longwill SM, Casella JF, Schultz KM. Rheological characterization of dynamic remodeling of the pericellular region by human mesenchymal stem cell‐secreted enzymes in well‐defined synthetic hydrogel scaffolds. Soft Matter 2018; 14 ( 16 ): 3078 – 3089‐3089.
dc.identifier.citedreferenceStevens KR, Scull MA, Ramanan V, Fortin CL, Chaturvedi RR, Knouse KA, Xiao JW, Fung C, Mirabella T, Chen AX, MG MC, Yang MT, Fleming HE, Chung K, de Jong YP, Chen CS, Rice CM, Bhatia SN. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 2017; 9 ( 399 ): eaah5505.
dc.identifier.citedreferenceRafii S, Butler JM, Ding B‐S. Angiocrine functions of organ‐specific endothelial cells. Nature 2016; 529 ( 7586 ): 316 – 325.
dc.identifier.citedreferenceBezenah JR, Kong YP, Putnam AJ. Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep 2018; 8 ( 1 ): 2671.
dc.identifier.citedreferencePill K, Melke J, Mühleder S, Pultar M, Rohringer S, Priglinger E, Redl HR, Hofmann S, Holnthoner W. Microvascular networks from endothelial cells and mesenchymal stromal cells from adipose tissue and bone marrow: A comparison. Front Bioeng Biotechnol 2018; 6: 156.
dc.identifier.citedreferenceNowak‐Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender HR, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela‐Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero‐Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte‐Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin‐Arik B, Yla‐Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21: 425 – 532.
dc.identifier.citedreferenceYana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M. Crosstalk between neovessels and mural cells directs the site‐specific expression of MT1‐MMP to endothelial tip cells. J Cell Sci 2007; 120 ( Pt 9 ): 1607 – 1614.
dc.identifier.citedreferenceTurk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture‐based oriented peptide libraries. Nat Biotechnol 2001; 19 ( 7 ): 661 – 667.
dc.identifier.citedreferencePatterson J, Hubbell JA. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP‐1 and MMP‐2. Biomaterials 2010; 31 ( 30 ): 7836 – 7845.
dc.identifier.citedreferencePratt AB, Weber FE, Schmoekel HG, Müller R, Hubbell JA. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 2004; 86 ( 1 ): 27 – 36.
dc.identifier.citedreferencevan Hinsbergh VW, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 2001; 936: 426 – 437.
dc.identifier.citedreferenceMinami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC. Thrombin and phenotypic modulation of the endothelium. Arterioscler Thromb Vasc Biol 2004; 24 ( 1 ): 41 – 53.
dc.identifier.citedreferenceSchultz KM, Kyburz KA, Anseth KS. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc Natl Acad Sci U S A 2015; 112 ( 29 ): E3757 – E3764.
dc.identifier.citedreferenceRaeber GP, Lutolf MP, Hubbell JA. Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophys J 2005; 89 ( 2 ): 1374 – 1388.
dc.identifier.citedreferenceCesarman‐Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129 ( 3 ): 307 – 321.
dc.identifier.citedreferenceSokic S, Papavasiliou G. Controlled Proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Eng Part A 2012; 18 ( 23–24 ): 2477 – 2486.
dc.identifier.citedreferenceBlache U, Vallmajo‐Martin Q, Horton ER, Guerrero J, Djonov V, Scherberich A, Erler JT, Martin I, Snedeker JG, Milleret V, Ehrbar M. Notch‐inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Rep 2018; 19: e45964.
dc.identifier.citedreferenceRamos‐DeSimone N, Hahn‐Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase‐9 (MMP‐9) via a converging plasmin/stromelysin‐1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274 ( 19 ): 13066 – 13076.
dc.identifier.citedreferenceTarui T, Majumdar M, Miles LA, Ruf W, Takada Y. Plasmin‐induced migration of endothelial cells. A potential target for the anti‐angiogenic action of angiostatin. J Biol Chem 2002; 277 ( 37 ): 33564 – 33570.
dc.identifier.citedreferenceYayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H. Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. Biochim Biophys Acta 2003; 1593 ( 2–3 ): 231 – 238.
dc.identifier.citedreferenceZollner H. Handbook of Enzyme Inhibitors. Weinheim, New York, NY, USA: Federal Republic of Germany, VCH; 1993.
dc.identifier.citedreferencePhelps EA, Landázuri N, Thulé PM, Taylor RW, García AJ. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 2010; 107 ( 8 ): 3323 – 3328.
dc.identifier.citedreferencePhelps EA, Templeman KL, Thulé PM, García AJ. Engineered VEGF‐releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Deliv Transl Res 2015; 5 ( 2 ): 125 – 136.
dc.identifier.citedreferenceSokic S, Christenson MC, Larson JC, Appel AA, Brey EM, Papavasiliou G. Evaluation of MMP substrate concentration and specificity for neovascularization of hydrogel scaffolds. Biomater Sci 2014; 2 ( 10 ): 1343 – 1354.
dc.identifier.citedreferenceTurturro MV, Christenson MC, Larson JC, Young DA, Brey EM, Papavasiliou G. MMP‐sensitive PEG Diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS One 2013; 8 ( 3 ): e58897.
dc.identifier.citedreferenceTrappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS. Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 2017; 8 ( 1 ): 371.
dc.identifier.citedreferencePeters EB, Christoforou N, Leong KW, Truskey GA, West JL. Poly(ethylene glycol) hydrogel scaffolds containing cell‐adhesive and protease‐sensitive peptides support microvessel formation by endothelial progenitor cells. Cell Mol Bioeng 2016; 9 ( 1 ): 38 – 54.
dc.identifier.citedreferenceGhajar CM, George SC, Putnam AJ. Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 2008; 18 ( 3 ): 251 – 278.
dc.identifier.citedreferenceHinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006; 26 ( 4 ): 716 – 728.
dc.identifier.citedreferenceChun T‐H, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, Birkedal‐Hansen H, Allen ED, Weiss SJ. MT1‐MMP‐dependent neovessel formation within the confines of the three‐dimensional extracellular matrix. J Cell Biol 2004; 167 ( 4 ): 757 – 767.
dc.identifier.citedreferenceHiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998; 95 ( 3 ): 365 – 377.
dc.identifier.citedreferenceGhajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 2010; 316 ( 5 ): 813 – 825.
dc.identifier.citedreferenceKachgal S, Carrion B, Janson IA, Putnam AJ. Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1‐MMP. J Cell Physiol 2012; 227 ( 11 ): 3546 – 3555.
dc.identifier.citedreferencePepper MS, Belin D, Montesano R, Orci L, Vassalli JD. Transforming growth factor‐beta 1 modulates basic fibroblast growth factor‐induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 1990; 111 ( 2 ): 743 – 755.
dc.identifier.citedreferenceKoolwijk P, MGv E, WJd V, Vermeer MA, Weich HA, Hanemaaijer R, VWv H. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 1996; 132 ( 6 ): 1177 – 1188.
dc.identifier.citedreferenceOh CW, Hoover‐Plow J, Plow EF. The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 2003; 1 ( 8 ): 1683 – 1687.
dc.identifier.citedreferenceVogten JM, Reijerkerk A, Meijers JCM, Voest EE, Rinkes IHMB, Gebbink MFBG. The role of the fibrinolytic system in corneal angiogenesis. Angiogenesis 2003; 6 ( 4 ): 311 – 316.
dc.identifier.citedreferenceKachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 2011; 14 ( 1 ): 47 – 59.
dc.identifier.citedreferenceGrainger SJ, Putnam AJ. Assessing the permeability of engineered capillary networks in a 3D culture. PLoS One 2011; 6 ( 7 ): e22086.
dc.identifier.citedreferenceGrainger SJ, Carrion B, Ceccarelli J, Putnam AJ. Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co‐delivery of endothelial cells and stromal cells. Tissue Eng Part A 2013; 19 ( 9–10 ): 1209 – 1222.
dc.identifier.citedreferenceVigen M, Ceccarelli J, Putnam AJ. Protease‐sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol Biosci 2014; 14 ( 10 ): 1368 – 1379.
dc.identifier.citedreferenceGhajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 2006; 12 ( 10 ): 2875 – 2888.
dc.identifier.citedreferenceRao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP. Matrix composition regulates three‐dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 2012; 15 ( 2 ): 253 – 264.
dc.identifier.citedreferenceFritz H, Wunderer G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung 1983; 33 ( 4 ): 479 – 494.
dc.identifier.citedreferenceMühleder S, Pill K, Schaupper M, Labuda K, Priglinger E, Hofbauer P, Charwat V, Marx U, Redl H, Holnthoner W. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose‐derived stem cells. Stem Cell Res Ther 2018; 9 ( 1 ): 35.
dc.identifier.citedreferenceLutolf MP, Lauer‐Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase‐sensitive hydrogels for the conduction of tissue regeneration: Engineering cell‐invasion characteristics. Proc Natl Acad Sci U S A 2003; 100 ( 9 ): 5413 – 5418.
dc.identifier.citedreferenceMcNulty AL, Weinberg JB, Guilak F. Inhibition of matrix metalloproteinases enhances in vitro repair of the meniscus. Clin Orthop Relat Res 2009; 467 ( 6 ): 1557 – 1567.
dc.identifier.citedreferenceFlory PJ. Principles of Polymer Chemistry. Ithaca: Cornell University Press; 1953. p. 672.
dc.identifier.citedreferenceChen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, George SC. Prevascularization of a fibrin‐based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 2009; 15 ( 6 ): 1363 – 1371.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.