Regional maps of rib cortical bone thickness and cross-sectional geometry
Holcombe, Sven A.; Kang, Yun‐seok; Derstine, Brian A.; Wang, Stewart C.; Agnew, Amanda M.
2019-11
Citation
Holcombe, Sven A.; Kang, Yun‐seok ; Derstine, Brian A.; Wang, Stewart C.; Agnew, Amanda M. (2019). "Regional maps of rib cortical bone thickness and cross-sectional geometry." Journal of Anatomy 235(5): 883-891.
Abstract
Here we present detailed regional bone thickness and cross-sectional measurements from full adult ribs using high resolution CT scans processed with a cortical bone mapping technique. Sixth ribs from 33 subjects ranging from 24 to 99 years of age were used to produce average cortical bone thickness maps and to provide average ± 1SD corridors for expected cross-section properties (cross-sectional areas and inertial moments) as a function of rib length. Results obtained from CT data were validated at specific rib locations using direct measurements from cut sections. Individual thickness measurements from CT had an accuracy (mean error) and precision (SD error) of -0.013 ± 0.167 mm (R2 coefficient of determination of 0.84). CT-based measurement errors for rib cross-sectional geometry were -0.1 ± 13.1% (cortical bone cross-sectional area) and 4.7 ± 1.8% (total cross-sectional area). Rib cortical bone thickness maps show the expected regional variation across a typical rib’s surface. The local mid-rib maxima in cortical thickness along the pleural rib aspect ranged from range 0.9 to 2.6 mm across the study population with an average map maximum of 1.4 mm. Along the cutaneous aspect, rib cortical bone thickness ranged from 0.7 to 1.9 mm with an average map thickness of 0.9 mm. Average cross-sectional properties show a steady reduction in total cortical bone area from 10% along the rib’s length through to the sternal end, whereas overall cross-sectional area remains relatively constant along the majority of the rib’s length before rising steeply towards the sternal end. On average, male ribs contained more cortical bone within a given cross-section than was seen for female ribs. Importantly, however, this difference was driven by male ribs having larger overall cross-sectional areas, rather than by sex differences in the bone thickness observed at specific local cortex sites. The cortical bone thickness results here can be used directly to improve the accuracy of current human body and rib models. Furthermore, the measurement corridors obtained from adult subjects across a wide age range can be used to validate future measurements from more widely available image sources such as clinical CT where gold standard reference measures (e.g. such as direct measurements obtained from cut sections) are otherwise unobtainable.Cortical Bone Mapping (CBM) of whole-rib CT scans was performed and maps of average adult cortical bone thickness and rib cross-sectional geometry were produced. Results were validated against cross-sectional rib histology images, whereby bone thickness accuracy was measured at under 0.02 mm and precision was measured at under 0.17 mm. Subsequent errors in bone cross-sectional area were under 5%. Results can drive advancements in the fidelity of current human body computational models.Publisher
Wiley Periodicals, Inc.
ISSN
0021-8782 1469-7580
Other DOIs
Types
Article
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.