Show simple item record

Recognition of the microbiota by Nod2 contributes to the oral adjuvant activity of cholera toxin through the induction of interleukin-1β

dc.contributor.authorKim, Donghyun
dc.contributor.authorKim, Yu‐mi
dc.contributor.authorKim, Wan‐uk
dc.contributor.authorPark, Jong‐hwan
dc.contributor.authorNúñez, Gabriel
dc.contributor.authorSeo, Sang‐uk
dc.date.accessioned2019-11-12T16:23:09Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-11-12T16:23:09Z
dc.date.issued2019-11
dc.identifier.citationKim, Donghyun; Kim, Yu‐mi ; Kim, Wan‐uk ; Park, Jong‐hwan ; Núñez, Gabriel ; Seo, Sang‐uk (2019). "Recognition of the microbiota by Nod2 contributes to the oral adjuvant activity of cholera toxin through the induction of interleukin-1β." Immunology 158(3): 219-229.
dc.identifier.issn0019-2805
dc.identifier.issn1365-2567
dc.identifier.urihttps://hdl.handle.net/2027.42/152023
dc.publisherWiley Periodicals, Inc.
dc.subject.othersymbiotic bacteria
dc.subject.otheradjuvant
dc.subject.othercholera toxin
dc.subject.otherinterleukin-1β
dc.subject.othermicrobiota
dc.subject.otherNod2
dc.titleRecognition of the microbiota by Nod2 contributes to the oral adjuvant activity of cholera toxin through the induction of interleukin-1β
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152023/1/imm13105_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152023/2/imm13105.pdf
dc.identifier.doi10.1111/imm.13105
dc.identifier.sourceImmunology
dc.identifier.citedreferencePalm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009; 227: 221 - 33.
dc.identifier.citedreferencePavot V, Rochereau N, Rességuier J, Gutjahr A, Genin C, Tiraby G et al. Cutting edge: new chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. J Immunol 2014; 193: 5781 - 5.
dc.identifier.citedreferenceKim D, Kim SH, Park E-J, Kim J, Cho S-H, Kagawa J et al. Suppression of allergic diarrhea in murine ovalbumin-induced allergic diarrhea model by PG102, a water-soluble extract prepared from Actinidia arguta. Int Arch Allergy Immunol 2009; 150: 164 - 71.
dc.identifier.citedreferenceUbeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120: 4332 - 41.
dc.identifier.citedreferenceHe Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41: 1012 - 21.
dc.identifier.citedreferencede Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396: 474 - 7.
dc.identifier.citedreferenceSteele AD, Patel M, Parashar UD, Victor JC, Aguado T, Neuzil KM. Rotavirus vaccines for infants in developing countries in Africa and Asia: considerations from a World Health Organization-Sponsored Consultation. J Infect Dis 2009; 200: S63 - 9.
dc.identifier.citedreferenceLevine MM. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol 2010; 8: 129.
dc.identifier.citedreferencePrendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140141.
dc.identifier.citedreferenceKorpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med 2012; 18: 328 - 36.
dc.identifier.citedreferenceCordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81: 341 - 54.
dc.identifier.citedreferenceFreytag LC, Clements JD. Mucosal adjuvants. Vaccine 2005; 23: 1804 - 13.
dc.identifier.citedreferenceHolmgren J. Actions of cholera toxin and the prevention and treatment of cholera. Nature 1981; 292: 413 - 7.
dc.identifier.citedreferenceSchwarz T. Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix ®. Adv Ther 2009; 26: 983 - 98.
dc.identifier.citedreferenceEllouz F, Adam A, Ciorbaru R, Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 1974; 59: 1317 - 25.
dc.identifier.citedreferenceMowat AMI, Donachie AM, Jägewall S, Schön K, Löwenadler B, Dalsgaard K et al. CTA1-DD-immune stimulating complexes: a novel, rationally designed combined mucosal vaccine adjuvant effective with nanogram doses of antigen. J Immunol 2001; 167: 3398 - 405.
dc.identifier.citedreferenceGagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 2000; 30: 2394 - 403.
dc.identifier.citedreferenceYamamoto M, Kiyono H, Yamamoto S, Batanero E, Kweon MN, Otake S et al. Direct effects on antigen-presenting cells and T lymphocytes explain the adjuvanticity of a nontoxic cholera toxin mutant. J Immunol 1999; 162: 7015 - 21.
dc.identifier.citedreferenceDinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095 - 147.
dc.identifier.citedreferenceStaats HF, Ennis FA. IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J Immunol 1999; 162: 6141 - 7.
dc.identifier.citedreferenceKusnecov AW, Rossi-George A. Potentiation of interleukin-1 β adjuvant effects on the humoral immune response to antigen in adrenalectomized mice. NeuroImmunoModulation 2001; 9: 109 - 18.
dc.identifier.citedreferenceRothel JS, Seow HF, Lightowlers MW, Parry BW, Gauci C, Hurst L et al. The use of recombinant ovine IL-1 β and TNF- α as natural adjuvants and their physiological effects in vivo. Immunol Cell Biol 1998; 76: 167 - 72.
dc.identifier.citedreferenceKajikawa A, Masuda K, Katoh M, Igimi S. Adjuvant effects for oral immunization provided by recombinant Lactobacillus casei secreting biologically active murine interleukin-1 β. Clin Vaccine Immunol 2010; 17: 43 - 8.
dc.identifier.citedreferenceJohnson AM, Kaushik RS, Francis DH, Fleckenstein JM, Hardwidge PR. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 2009; 191: 178 - 86.
dc.identifier.citedreferenceLiang S, Hajishengallis G. Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunol Invest 2002; 39: 449 - 67.
dc.identifier.citedreferenceBagley KC, Abdelwahab SF, Tuskan RG, Fouts TR, Lewis GK. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 2002; 72: 962 - 9.
dc.identifier.citedreferenceHolmgren J, Lonnroth I, Svennerholm L. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 1973; 8: 208 - 14.
dc.identifier.citedreferenceKatada T, Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 1982; 79: 3129 - 33.
dc.identifier.citedreferenceCassel D, Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 1978; 75: 2669 - 73.
dc.identifier.citedreferenceLycke N, Tsuji T, Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur J Immunol 1992; 22: 2277 - 81.
dc.identifier.citedreferenceXu-Amano J, Kiyono H, Jackson RJ, Staats HF, Fujihashi K, Burrows PD et al. Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J Exp Med 1993; 178: 1309 - 20.
dc.identifier.citedreferenceYamamoto S, Kiyono H, Yamamoto M, Imaoka K, Yamamoto M, Fujihashi K et al. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc Natl Acad Sci USA 1997; 94: 5267 - 72.
dc.identifier.citedreferenceDatta SK, Sabet M, Nguyen KPL, Valdez PA, Gonzalez-Navajas JM, Islam S et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc Natl Acad Sci USA 2010; 107: 10638 - 43.
dc.identifier.citedreferenceLi X, Murray F, Koide N, Goldstone J, Dann SM, Chen J et al. Divergent requirement for G α s and cAMP in the differentiation and inflammatory profile of distinct mouse Th subsets. J Clin Invest 2012; 122: 963 - 73.
dc.identifier.citedreferenceMartin M, Metzger DJ, Michalek SM, Connell TD, Russell MW. Distinct cytokine regulation by cholera toxin and type II heat-labile toxins involves differential regulation of CD40 ligand on CD4 + T cells. Infect Immun 2001; 69: 4486 - 92.
dc.identifier.citedreferenceKawamura YI, Kawashima R, Shirai Y, Kato R, Hamabata T, Yamamoto M et al. Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF- κ B translocation. Eur J Immunol 2003; 33: 3205 - 12.
dc.identifier.citedreferenceBromander A, Holmgren J, Lycke N. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. J Immunol 1991; 146: 2908 - 14.
dc.identifier.citedreferenceKamada N, Seo S-U, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13: 321 - 35.
dc.identifier.citedreferenceKim D, Zeng MY, Núñez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 2017; 49: e339.
dc.identifier.citedreferenceOh Jason Z, Ravindran R, Chassaing B, Carvalho Frederic A, Maddur Mohan S, Bower M et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 2014; 41: 478 - 92.
dc.identifier.citedreferenceKim D, Kim Y-G, Seo S-U, Kim D-J, Kamada N, Prescott D et al. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 2016; 22: 524 - 30.
dc.identifier.citedreferenceShaw MH, Reimer T, Kim Y-G, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 2008; 20: 377 - 82.
dc.identifier.citedreferenceInohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn-s disease. J Biol Chem 2003; 278: 5509 - 12.
dc.identifier.citedreferenceGirardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869 - 72.
dc.identifier.citedreferencePark J-H, Kim Y-G, McDonald C, Kanneganti T-D, Hasegawa M, Body-Malapel M et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol. 2007; 178: 2380 - 6.
dc.identifier.citedreferenceHasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF- κ B activation. EMBO J 2008; 27: 373 - 83.
dc.identifier.citedreferenceMagalhaes JG, Fritz JH, Le Bourhis L, Sellge G, Travassos LH, Selvanantham T et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol 2008; 181: 7925 - 35.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.