Show simple item record

Prospective serum metabolomic profiling of lethal prostate cancer

dc.contributor.authorHuang, Jiaqi
dc.contributor.authorMondul, Alison M.
dc.contributor.authorWeinstein, Stephanie J.
dc.contributor.authorDerkach, Andriy
dc.contributor.authorMoore, Steven C.
dc.contributor.authorSampson, Joshua N.
dc.contributor.authorAlbanes, Demetrius
dc.date.accessioned2019-11-12T16:23:25Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2019-11-12T16:23:25Z
dc.date.issued2019-12-15
dc.identifier.citationHuang, Jiaqi; Mondul, Alison M.; Weinstein, Stephanie J.; Derkach, Andriy; Moore, Steven C.; Sampson, Joshua N.; Albanes, Demetrius (2019). "Prospective serum metabolomic profiling of lethal prostate cancer." International Journal of Cancer 145(12): 3231-3243.
dc.identifier.issn0020-7136
dc.identifier.issn1097-0215
dc.identifier.urihttps://hdl.handle.net/2027.42/152026
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermetabolomics
dc.subject.otherlethal prostate cancer
dc.subject.othernested case–control
dc.subject.otherantioxidants
dc.titleProspective serum metabolomic profiling of lethal prostate cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152026/1/ijc32218.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152026/2/ijc32218_am.pdf
dc.identifier.doi10.1002/ijc.32218
dc.identifier.sourceInternational Journal of Cancer
dc.identifier.citedreferenceSteele VE, Holmes CA, Hawk ET, et al. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1999; 8: 467 – 83.
dc.identifier.citedreferenceCavallini D, De Marco C, Mondovi B, et al. Studies of the metabolism of thiazolidine carboxylic acid by rat liver homogenate. Biochim Biophys Acta 1956; 22: 558 – 64.
dc.identifier.citedreferenceTsuda M, Kurashima Y. Nitrite‐trapping capacity of thioproline in the human body. IARC Sci Publ 1991;105: 123 – 8.
dc.identifier.citedreferenceMoriarty‐Craige SE, Jones DP. Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 2004; 24: 481 – 509.
dc.identifier.citedreferenceFitian AI, Nelson DR, Liu C, et al. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS‐MS. Liver Int 2014; 34: 1428 – 44.
dc.identifier.citedreferenceVan Hemelrijck M, Jassem W, Walldius G, et al. Gamma‐glutamyltransferase and risk of cancer in a cohort of 545,460 persons ‐ the Swedish AMORIS study. Eur J Cancer 2011; 47: 2033 – 41.
dc.identifier.citedreferenceKunutsor SK, Laukkanen JA. Gamma‐glutamyltransferase and risk of prostate cancer: findings from the KIHD prospective cohort study. Int J Cancer 2017; 140: 818 – 24.
dc.identifier.citedreferenceZhang T, Wu X, Ke C, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res 2013; 12: 505 – 12.
dc.identifier.citedreferencePerez‐Rambla C, Puchades‐Carrasco L, Garcia‐Flores M, et al. Non‐invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 2017; 13: 52.
dc.identifier.citedreferenceByrne RT, Jenkins HT, Peters DT, et al. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A 2015; 112: 6033 – 7.
dc.identifier.citedreferenceKato T, Daigo Y, Hayama S, et al. A novel human tRNA‐dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res 2005; 65: 5638 – 46.
dc.identifier.citedreferenceKelly RS, Sinnott JA, Rider JR, et al. The role of tumor metabolism as a driver of prostate cancer progression and lethal disease: results from a nested case‐control study. Cancer Metab 2016; 4: 22.
dc.identifier.citedreferenceCrowe FL, Appleby PN, Travis RC, et al. Circulating fatty acids and prostate cancer risk: individual participant meta‐analysis of prospective studies. J Natl Cancer Inst 2014; 106:pii:dju240.
dc.identifier.citedreferenceGupta S, Srivastava M, Ahmad N, et al. Lipoxygenase‐5 is overexpressed in prostate adenocarcinoma. Cancer 2001; 91: 737 – 43.
dc.identifier.citedreferenceGhosh J, Myers CE. Inhibition of arachidonate 5‐lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A 1998; 95: 13182 – 7.
dc.identifier.citedreferenceMartinez‐Outschoorn UE, Lin Z, Whitaker‐Menezes D, et al. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 2012; 11: 3964 – 71.
dc.identifier.citedreferenceLiu Y, Hong Z, Tan G, et al. NMR and LC/MS‐based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int J Cancer 2014; 135: 658 – 68.
dc.identifier.citedreferenceSanchez‐Espiridion B, Liang D, Ajani JA, et al. Identification of serum markers of esophageal adenocarcinoma by global and targeted metabolic profiling. Clin Gastroenterol Hepatol 2015; 13: 1730 – 7. e9.
dc.identifier.citedreferenceTurkoglu O, Zeb A, Graham S, et al. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics 2016; 12:1–16.
dc.identifier.citedreferenceTroisi J, Sarno L, Landolfi A, et al. Metabolomic signature of endometrial cancer. J Proteome Res 2018; 17: 804 – 12.
dc.identifier.citedreferenceCarracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13: 227 – 32.
dc.identifier.citedreferenceNomura DK, Long JZ, Niessen S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140: 49 – 61.
dc.identifier.citedreferenceNomura DK, Lombardi DP, Chang JW, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol 2011; 18: 846 – 56.
dc.identifier.citedreferencePrentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29: 647 – 76.
dc.identifier.citedreferenceHuang J, Weinstein SJ, Kitahara CM, et al. A prospective study of serum metabolites and glioma risk. Oncotarget 2017; 8: 70366 – 77.
dc.identifier.citedreferencePrensner JR, Rubin MA, Wei JT, et al. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med 2012; 4: 127rv3.
dc.identifier.citedreferenceDunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2011; 40: 387 – 426.
dc.identifier.citedreferenceKelly RS, Vander Heiden MG, Giovannucci E, et al. Metabolomic biomarkers of prostate cancer: prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiol Biomarkers Prev 2016; 25: 887 – 906.
dc.identifier.citedreferenceMondul AM, Moore SC, Weinstein SJ, et al. 1‐Stearoylglycerol is associated with risk of prostate cancer: results from serum metabolomic profiling. Metabolomics 2014; 10: 1036 – 41.
dc.identifier.citedreferenceMondul AM, Moore SC, Weinstein SJ, et al. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha‐tocolpherol, beta‐carotene cancer prevention (ATBC) study. Int J Cancer 2015; 137: 2124 – 32.
dc.identifier.citedreferenceKuhn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med 2016; 14: 13.
dc.identifier.citedreferenceHuang J, Mondul AM, Weinstein SJ, et al. Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer 2016; 115: 1087 – 95.
dc.identifier.citedreferenceSchmidt JA, Fensom GK, Rinaldi S, et al. Pre‐diagnostic metabolite concentrations and prostate cancer risk in 1077 cases and 1077 matched controls in the European Prospective Investigation into Cancer and Nutrition. BMC Med 2017; 15: 122.
dc.identifier.citedreferenceThe ATBC Cancer Prevention Study Group. The alpha‐tocopherol, beta‐carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann Epidemiol 1994; 4: 1 – 10.
dc.identifier.citedreferenceMilne DB, Botnen J. Retinol, alpha‐tocopherol, lycopene, and alpha‐ and beta‐carotene simultaneously determined in plasma by isocratic liquid chromatography. Clin Chem 1986; 32: 874 – 6.
dc.identifier.citedreferenceEvans AMBB, Liu Q, Mitchell MW, et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high‐throughput profiling metabolomics. Metabolomics 2014; 4: 132. https://doi.org/10.4172/2153-0769.1000132.
dc.identifier.citedreferenceSumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007; 3: 211 – 21.
dc.identifier.citedreferenceSubramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545 – 50.
dc.identifier.citedreferenceJeelani G, Sato D, Soga T, et al. Mass spectrometric analysis of L‐cysteine metabolism: physiological role and fate of L‐cysteine in the enteric protozoan parasite Entamoeba histolytica. MBio 2014; 5: e01995.
dc.identifier.citedreferenceBartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high‐throughput metabolomics data. Comput Struct Biotechnol J 2013; 4: e201301009.
dc.identifier.citedreferenceKrumsiek J, Suhre K, Illig T, et al. Gaussian graphical modeling reconstructs pathway reactions from high‐throughput metabolomics data. BMC Syst Biol 2011; 5: 21.
dc.identifier.citedreferenceBounous G, Beer D. Molecular pathogenesis and prevention of prostate cancer. Anticancer Res 2004; 24: 553 – 4.
dc.identifier.citedreferenceChaiswing L, Zhong W, Oberley TD. Increasing discordant antioxidant protein levels and enzymatic activities contribute to increasing redox imbalance observed during human prostate cancer progression. Free Radic Biol Med 2014; 67: 342 – 52.
dc.identifier.citedreferenceChaiswing L, Zhong W, Liang Y, et al. Regulation of prostate cancer cell invasion by modulation of extra‐ and intracellular redox balance. Free Radic Biol Med 2012; 52: 452 – 61.
dc.identifier.citedreferenceCramer SL, Saha A, Liu J, et al. Systemic depletion of L‐cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 2017; 23: 120 – 7.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.