Show simple item record

A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification

dc.contributor.authorMartín‐Bravo, Santiago
dc.contributor.authorJiménez‐Mejías, Pedro
dc.contributor.authorVillaverde, Tamara
dc.contributor.authorEscudero, Marcial
dc.contributor.authorHahn, Marlene
dc.contributor.authorSpalink, Daniel
dc.contributor.authorRoalson, Eric H.
dc.contributor.authorHipp, Andrew L.
dc.contributor.authorBenítez‐benítez, Carmen
dc.contributor.authorP. Bruederle, Leo
dc.contributor.authorFitzek, Elisabeth
dc.contributor.authorFord, Bruce A.
dc.contributor.authorFord, Kerry A.
dc.contributor.authorGarner, Mira
dc.contributor.authorGebauer, Sebastian
dc.contributor.authorHoffmann, Matthias H.
dc.contributor.authorJin, Xiao‐feng
dc.contributor.authorLarridon, Isabel
dc.contributor.authorLéveillé‐Bourret, Étienne
dc.contributor.authorLu, Yi‐Fei
dc.contributor.authorLuceño, Modesto
dc.contributor.authorMaguilla, Enrique
dc.contributor.authorMárquez‐corro, Jose Ignacio
dc.contributor.authorMíguez, Mónica
dc.contributor.authorNaczi, Robert
dc.contributor.authorReznicek, Anton A.
dc.contributor.authorStarr, Julian R.
dc.date.accessioned2020-01-13T15:03:58Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:03:58Z
dc.date.issued2019-11
dc.identifier.citationMartín‐bravo, Santiago ; Jiménez‐mejías, Pedro ; Villaverde, Tamara; Escudero, Marcial; Hahn, Marlene; Spalink, Daniel; Roalson, Eric H.; Hipp, Andrew L.; Benítez‐benítez, Carmen ; P. Bruederle, Leo; Fitzek, Elisabeth; A. Ford, Bruce; A. Ford, Kerry; Garner, Mira; Gebauer, Sebastian; H. Hoffmann, Matthias; Jin, Xiao‐feng ; Larridon, Isabel; Léveillé‐bourret, Étienne ; Lu, Yi‐fei ; Luceño, Modesto ; Maguilla, Enrique; Márquez‐corro, Jose Ignacio ; Míguez, Mónica ; Naczi, Robert; A. Reznicek, Anton; R. Starr, Julian (2019). "A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification." Journal of Systematics and Evolution 57(6): 695-718.
dc.identifier.issn1674-4918
dc.identifier.issn1759-6831
dc.identifier.urihttps://hdl.handle.net/2027.42/152531
dc.description.abstractThe megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in coldâ temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carexâ dated phylogeny based on three markers (ETSâ ITSâ matK), using a previous phylogenomic Hybâ Seq framework, and a sampling of twoâ thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a â museumâ of extant species diversity. Subsequent â outâ ofâ Asiaâ colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10â My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhyperdiverse
dc.subject.otherancestral area reconstruction
dc.subject.otherbiogeographic stochastic mapping
dc.subject.otherboreoâ temperate
dc.subject.otherdispersal
dc.subject.otherdiversification rates
dc.subject.otherphylogeny
dc.titleA tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/1/jse12549-sup-0007-datas7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/2/jse12549_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/3/jse12549-sup-0008-datas8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/4/jse12549-sup-0013-figs4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/5/jse12549-sup-0010-figs1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/6/jse12549-sup-0012-figs3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/7/jse12549-sup-0011-figs2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/8/jse12549-sup-0004-datas4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/9/jse12549-sup-0005-datas5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/10/jse12549-sup-0006-datas6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/11/jse12549-sup-0003-datas3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/12/jse12549.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/13/jse12549-sup-0009-datas9.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152531/14/jse12549-sup-0014-figs5.pdf
dc.identifier.doi10.1111/jse.12549
dc.identifier.sourceJournal of Systematics and Evolution
dc.identifier.citedreferenceSanmartín I, Meseguer AS. 2016. Extinction in phylogenetics and biogeography: From timetrees to patterns of biotic assemblage. Frontiers in Genetics 7: 35.
dc.identifier.citedreferenceSanmartín I, Ronquist F. 2004. Southern hemisphere biogeography inferred by eventâ based models: Plant versus animal patterns. Systematic Biology 53: 216 â 243.
dc.identifier.citedreferenceSanmartín I, Wanntorp L, Winkworth RC. 2007. West wind drift revisited: Testing for directional dispersal in the Southern Hemisphere using eventâ based tree fitting. Journal of Biogeography 34: 398 â 416.
dc.identifier.citedreferenceSaladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. 2017. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. BMC Evolutionary Biology 17: 95.
dc.identifier.citedreferenceSanderson MJ. 2002. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution 19: 101 â 109.
dc.identifier.citedreferenceSauquet H, Syw Ho, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JM, Udovicic F. 2012. Testing the impact of calibration on molecular divergence times using a fossilâ rich group: The case of Nothofagus (Fagales). Systematic Biology 61: 289 â 313.
dc.identifier.citedreferenceSchellart WP, Lister G, Toy VG. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earthâ Science Reviews 76: 191 â 233.
dc.identifier.citedreferenceSchönberger I, Wilton AD, Boardman KF, Breitwieser I, Cochrane M, James de Lange P, de Pauw B, Fife AJ, Ford KA, Gibb ES, Glenny D, Korver M, Mosyakin SL, Novis PM, Prebble J, Redmond DN, Smissen RD, Tawiri K. 2017. Checklist of the New Zealand floraâ Seed plants. Lincoln: Manaaki Whenuaâ Landcare Research.
dc.identifier.citedreferenceSchönswetter P, Elven R, Brochmann C. 2008. Transâ Atlantic dispersal and largeâ scale lack of genetic structure in the circumpolar, arcticâ alpine sedge Carex bigelowii s.l. (Cyperaceae). American Journal of Botany 95: 1006 â 1014.
dc.identifier.citedreferenceSchönswetter P, Popp M, Brochmann C. 2006. Central Asian origin of and strong genetic differentiation among populations of the rare and disjunct Carex atrofusca (Cyperaceae) in the Alps. Journal of Biogeography 33: 948 â 956.
dc.identifier.citedreferenceSemmouri I, Bauters K, Léveilléâ Bourret à , Starr JR, Goetghebeur P, Larridon I. 2019. Phylogeny and systematics of Cyperaceae, the evolution and importance of embryo morphology. Botanical Review 85: 1 â 39.
dc.identifier.citedreferenceSimões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, Lieberman BS. 2016. The evolving theory of evolutionary radiations. Trends in Ecology and Evolution 31: 27 â 34.
dc.identifier.citedreferenceSimpson MG, Johnson LA, Villaverde T, Guilliams CM. 2017. American amphitropical disjuncts: Perspectives from vascular plant analyses and prospects for future research. American Journal of Botany 104: 1600 â 1650.
dc.identifier.citedreferenceSmith SA, O’Meara BC. 2012. Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 â 2690.
dc.identifier.citedreferenceSmith SY, Collinson ME, Simpson DA, Rudall PJ, Marone F, Stampanoni M. 2009. Elucidating the affinities and habitat of ancient widespread Cyperaceae: Volkeria messelensis gen. et sp. nov., a fossil mapanioid sedge from the Eocene of Europe. American Journal of Botany 96: 1506 â 1518.
dc.identifier.citedreferenceSpalink D, Drew BT, Pace MC, Zaborsky JG, Li P, Cameron KM, Givnish JG, Sytsma KJ. 2016a. Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Molecular Phylogenetics and Evolution 95: 183 â 195.
dc.identifier.citedreferenceSpalink D, Drew BT, Pace MC, Zaborsky JG, Starr JR, Cameron KM, Givnish TJ, Sytsma KJ. 2016b. Biogeography of the cosmopolitan sedges (Cyperaceae) and the areaâ richness correlation in plants. Journal of Biogeography 43: 1893 â 1904.
dc.identifier.citedreferenceSpalink D, Pender J, Escudero M, Hipp AL, Roalson EH, Starr J, Waterway MJ, Bohs L, Sytsma KJ. 2018. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae). Journal of Systematics and Evolution 56: 449 â 465.
dc.identifier.citedreferenceStamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and postâ analysis of large phylogenies. Bioinformatics 30: 1312 â 1313.
dc.identifier.citedreferenceStarr JR, Bayer RJ, Ford BA. 1999. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). American Journal of Botany 86: 563 â 577.
dc.identifier.citedreferenceStarr JR, Ford BA. 2009. Phylogeny and evolution in Cariceae (Cyperaceae): current knowledge and future direction. Botanical Review 75: 110 â 137.
dc.identifier.citedreferenceStarr JR, Harris SA, Simpson DA. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: Generic relationships and evolutionary scenarios. Systematic Botany 29: 528 â 544.
dc.identifier.citedreferenceStarr JR, Harris SA, Simpson DA. 2008. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae II: the limits of Uncinia. In: Naczi RFC, Ford BA eds. Sedges: Uses, Diversity and Systematics of the Cyperaceae. Monographs in Systematic Botany from the Missouri Botanical Garden 108: 243 â 267.
dc.identifier.citedreferenceStarr JR, Janzen FH, Ford BA. 2015. Three new early diverging Carex (Cariceae, Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications. Molecular Phylogenetics and Evolution 88: 105 â 120.
dc.identifier.citedreferenceSvenning C. 2003. Deterministic Plioâ Pleistocene extinctions in the European coolâ temperate tree flora. Ecology Letters 6: 646 â 653.
dc.identifier.citedreferenceStehli FG, Webb D. 1985. The great American interchange. New York: Plenum Press.
dc.identifier.citedreferenceTakhtajan A. 1986. Floristic regions of the world. Berkeley: University of California Press.
dc.identifier.citedreferenceThiers B. 2019. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. Available from http://sweetgum.nybg.org/science/ih/ [accessed November 2019].
dc.identifier.citedreferenceTripp EA, McDade LA. 2014. A rich fossil record yields calibrated phylogeny for Acanthaceae (Lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions. Systematic Biology 63: 660 â 684.
dc.identifier.citedreferenceUribeâ Convers S, Tank DC. 2015. Shifts in diversification rates linked to biogeographic movement into new areas: An example of disparate continental distributions and a recent radiation in the Andes. American Journal of Botany 102: 1854 â 1869.
dc.identifier.citedreferenceUzma, Jiménezâ Mejías P, Amir R, Qasim Hayat M, Hipp AL. 2019. Time and ecological priority shaped the diversification of sedges in the Himalayas. PeerJ 7: e6792
dc.identifier.citedreferenceVargas P, Valente LM, Blancoâ Pastor JL, Liberal I, Guzmán B, Cano E, Forrest A, Fernándezâ Mazuecos M. 2014. Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: Snapdragons and the Madreanâ Tethyan flora. Journal of Biogeography 41: 932 â 943.
dc.identifier.citedreferenceVeevers JJ, Powel CM, Roots SR. 1991. Review of the seafloor spreading around Australia. I. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences 38: 373 â 389.
dc.identifier.citedreferenceViljoen J, Muasya MA, Barrett RL, Bruhl JJ, Gibbs AK, Slingsby JA, Wilson KA, Verboom GA. 2013. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere. American Journal of Botany 100: 2494 â 2508.
dc.identifier.citedreferenceVillaverde T, Escudero M, Luceño M, Martínâ Bravo S. 2015a. Longâ distance dispersal during the middleâ late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). Journal of Biogeography 42: 1820 â 1831.
dc.identifier.citedreferenceVillaverde T, Escudero M, Martínâ Bravo S, Bruederle LP, Luceño M, Starr JR. 2015b. Direct longâ distance dispersal best explains the bipolar distribution of Carex arctogena ( Carex sect. Capituligerae, Cyperaceae). Journal of Biogeography 42: 1514 â 1525.
dc.identifier.citedreferenceVillaverde T, Escudero M, Martínâ Bravo S, Jiménezâ Mejías P, Sanmartín I, Vargas P, Luceño M. 2017a. Bipolar distributions in vascular plants: A review. American Journal of Botany 104: 1680 â 1694.
dc.identifier.citedreferenceVillaverde T, Escudero M, Martínâ Bravo S, Luceño M. 2017b. Two independent dispersals to the Southern Hemisphere to become the most widespread bipolar Carex species: Biogeography of C. canescens (Cyperaceae). Botanical Journal of the Linnean Society 183: 360 â 372.
dc.identifier.citedreferenceVillaverde T, Jiménezâ Mejías P, Luceño M, Waterway MJ, Kim S, Lee B, Rincón-Barrado M, Hahn M, Maguilla E, Roalson EH, Hipp AL, Global Carex Group. A new classification of Carex subgenera supported by a HybSeq backbone phylogeny. [In review]
dc.identifier.citedreferenceVillaverde T, Maguilla E, Escudero M, Márquezâ Corro JI, Jiménezâ Mejías P, Gehrke B, Martínâ Bravo S, Luceño M. 2017c. New insights into the systematics of the Schoenoxiphium clade ( Carex, Cyperaceae). International Journal of Plant Sciences 178: 320 â 329.
dc.identifier.citedreferenceWaterway MJ, Hoshino T, Masaki T. 2009. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Review 75: 138 â 159.
dc.identifier.citedreferenceWaterway MJ, Starr JR. 2007. Phylogenetic relationships in tribe Cariceae (Cyperaceae) based on nested analyses of four molecular data sets. Aliso 23: 165â 192.
dc.identifier.citedreferenceWCSP. 2019. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Avalaible from http://wcsp.science.kew.org/ [accessed 22 July 2019].
dc.identifier.citedreferenceWellborn GA, Langerhans RB. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution 5: 176 â 195.
dc.identifier.citedreferenceWestergaard KB, Zemp N, Bruederle LP, Stenøien HK, Widmer A, Fior S. 2019. Population genomic evidence for plant glacial survival in Scandinavia. Molecular Ecology 28: 818 â 832.
dc.identifier.citedreferenceWillis CG, Davis CC. 2015. Rethinking migration. Science 348: 766.
dc.identifier.citedreferenceWillis CG, Franzone BF, Xi Z, Davis CC. 2014. The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico. Frontiers in Genetics 5: 433.
dc.identifier.citedreferenceYano O, Ikeda H, Jin XF, Hoshino T. 2014. Phylogeny and chromosomal variations in East Asian Carex, Siderostictae group (Cyperaceae), based on DNA sequences and cytological data. Journal of Plant Research 127: 99 â 107.
dc.identifier.citedreferenceZhisheng A, Kutzbach JE, Prell WL, Porter SC. 2001. Evolution of Asian monsoons and phased uplift of the Himalayaâ Tibetan plateau since Late Miocene times. Nature 411: 62 â 66.
dc.identifier.citedreferenceZuloaga FO, Salariato DL, Scataglini A. 2018. Molecular phylogeny of Panicum s. str. (Poaceae, Panicoideae, Paniceae) and insights into its biogeography and evolution. PLoS ONE 13: e0191529
dc.identifier.citedreferenceAbrams P. 1983. The theory of limiting similarity. Annual Review of Ecology, Evolution, and Systematics 14: 359 â 376.
dc.identifier.citedreferenceAnisimova M, Gascuel O. 2006. Approximate likelihoodâ ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biology 55: 539 â 552.
dc.identifier.citedreferenceAnisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. 2011. Survey of branch support methods demonstrates accuracy power, and robustness of fast likelihoodâ based approximation schemes. Systematic Biology 60: 685 â 699.
dc.identifier.citedreferenceBacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences USA 112: 6110 â 6115.
dc.identifier.citedreferenceBall PW. 1990. Some aspects of the phytogeography of Carex. Canadian Journal of Botany 68: 1462â 1472.
dc.identifier.citedreferenceBall PW, Reznicek AA. 2002. Carex [Generic description and key to species]. In: Flora of North America Editorial Committee eds. Flora of North America. New York, NY and Oxford, UK: Oxford University Press. 23: 254 â 273.
dc.identifier.citedreferenceBartoli G, Sarnthein M, Weinelt M, Erlenkeuser H, Garbe-Schönberg D, Lea DW. 2005. Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth and Planetary Science Letters 237: 33â 44.
dc.identifier.citedreferenceBenítezâ Benítez C, Escudero M, Rodríguezâ Sánchez F, Martínâ Bravo S, Jiménezâ Mejías P. 2018. Plioceneâ Pleistocene ecological niche evolution shapes the phylogeography of a Mediterranean plant group. Molecular Ecology 27: 1696 â 1713.
dc.identifier.citedreferenceBenítezâ Benítez C, Míguez M, Jiménezâ Mejías P, Martínâ Bravo S. 2017. Molecular and morphological data resurrect the long neglected Carex laxula (Cyperaceae) and expand its range in the western Mediterranean. Anales del Jardín Botánico de Madrid 74: e057.
dc.identifier.citedreferenceBerger BA, Kriebel R, Spalink D, Sytsma KJ. 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95: 116 â 136.
dc.identifier.citedreferenceBerger SA, Krompass D, Stamatakis A. 2011. Performance, accuracy, and web server for volutionary placement of short sequence reads under maximum likelihood. Systematic Biology 60: 291 â 302.
dc.identifier.citedreferenceBouchenakâ Khelladi Y, Onstein RE, Xing Y, Schwery O, Linder HP. 2015. On the complexity of triggering evolutionary radiations. New Phytologist 207: 313 â 326.
dc.identifier.citedreferenceBrummitt RK. 2001. World geographical scheme for recording plant distributions. 2nd ed. Pittsburgh: Hunt Institute for Botanical Documentation.
dc.identifier.citedreferenceCantril D, Poole I. 2012. The vegetation of Antarctica through geological time. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceChandler MEJ. 1963. Revision of the Oligocene floras of the Isle of Wight. Bulletin of the British Museum (Natural History). Geology 6: 321 â 384.
dc.identifier.citedreferenceChater AO. 1980. Carex L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA eds. Flora Europaea, Alismataceae to Orchidaceae. Cambridge: Cambridge University Press. 5: 290 â 323.
dc.identifier.citedreferenceDai LK, Liang SY, Zhang SR, Tang YC, Koyama T, Tucker, GC. 2010. Carex L. In: Wu ZY, Raven PH, Hong DY eds. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 23: 285 â 461.
dc.identifier.citedreferenceDerieg NJ, Sanguamphai A, Bruederle LP. 2008. Genetic diversity and endemism in North American Carex section Ceratocystis (Cyperaceae). American Journal of Botany 95: 1287 â 1296.
dc.identifier.citedreferenceDragon J, Barrington DS. 2009. Systematics of the Carex aquatilis and C. lenticularis lineages: Geographically and ecologically divergent sister clades of Carex section Phacocystis (Cyperaceae). American Journal of Botany 96: 1896 â 1906.
dc.identifier.citedreferenceDrummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
dc.identifier.citedreferenceDrummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969 â 1973.
dc.identifier.citedreferenceDupin J, Matzke NJ, Sarkinen T, Knapp S, Olmstead R, Bohs L, Smith S. 2016. Bayesian estimation of the global biogeographic history of the Solanaceae. Journal of Biogeography 44: 887 â 899.
dc.identifier.citedreferenceEcheverríaâ Londoño S, Särkinen T, Fenton IS, Knapp S, Purvis A 2018. Dynamism and context dependency in the diversification of the megadiverse plant genus Solanum L. (Solanaceae). Available from https://doi.org/10.1101/348961
dc.identifier.citedreferenceEdgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792 â 1797.
dc.identifier.citedreferenceEgorova TV. 1999. The sedges (Carex L.) of Russia and adjacent states. St Louis: Missouri Botanical Garden Press.
dc.identifier.citedreferenceElliott TL, Waterway MJ, Davies TJ. 2016. Contrasting lineageâ specific patterns conceal community phylogenetic structure in larger clades. Journal of Vegetation Science 27: 69 â 79.
dc.identifier.citedreferenceEscudero M, Hipp A, Waterway MJ, Valente L. 2012. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone ( Carex, Cyperaceae). Molecular Phylogenetics and Evolution 63: 650 â 655.
dc.identifier.citedreferenceEscudero M, Luceño M. 2009. Systematics and evolution of Carex sects. Spirostachyae and Elatae (Cyperaceae). Plant Systematics and Evolution 279: 163 â 189.
dc.identifier.citedreferenceEscudero M, Valcárcel V, Vargas P, Luceño M. 2009. Ecological vicariance and long distance dispersal significance in the diversification of Carex sect. Spirostachyae (Cyperaceae). American Journal of Botany 96: 2100 â 2114.
dc.identifier.citedreferenceEscudero M, Vargas P, Arens P, Ouborg NJ, Luceño M. 2010. The eastâ westâ north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae). Molecular Ecology 19: 352 â 370.
dc.identifier.citedreferenceFavre A, Päckert, M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellnerâ Riehl AN. 2015. The role of the uplift of the Qinghaiâ Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews of the Cambridge Philosophical Society 90: 236 â 253.
dc.identifier.citedreferenceFernándezâ Mazuecos M, Blancoâ Pastor JL, Juan A, Carnicero P, Forrest A, Alarcon M, Vargas P, Glover BJ. 2018. Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytologist 222: 1122 â 1138.
dc.identifier.citedreferenceFord KA. 2007. Carex (Cyperaceae)â Two new species from the calcareous mountains of Northâ West Nelson, New Zealand. New Zealand Journal of Botany 45: 721 â 730.
dc.identifier.citedreferenceFord BA, Ghazvini H, Naczi RFC, Starr JR. 2012. Phylogeny of Carex subg. Vignea (Cyperaceae) based on amplified fragment length polymorphism and nrDNA data. Systematic Botany 37: 913 â 925.
dc.identifier.citedreferenceGebauer S, Röser M, Hoffmann M. 2015. Molecular phylogeny of the speciesâ rich Carex sect. Racemosae (Cyperaceae) based on four nuclear and chloroplast markers. Systematic Botany 40: 433 â 447.
dc.identifier.citedreferenceGebauer S, Starr JR, Hoffmann M. 2014. Parallel and convergent diversification in two northern hemispheric speciesâ rich Carex lineages (Cyperaceae). Organisms Diversity and Evolution 14: 247 â 258.
dc.identifier.citedreferenceGehrke B, Linder HP. 2009. The scramble for Africa: Panâ temperate elements on the African high mountains. Proceedings of the Royal Society B: Biological Sciences 276: 2657 â 2665.
dc.identifier.citedreferenceGehrke B, Martínâ Bravo S, Muasya A, Luceño M. 2010. Monophyly, phylogenetic position and the role of hybridization in Schoenoxiphium Nees ( Cariceae, Cyperaceae). Molecular Phylogenetics and Evolution 56: 380 â 392.
dc.identifier.citedreferenceGivnish TJ, Renner SS. 2004. Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. International Journal of Plant Sciences 165 ( Suppl 4 ): S1 â S6.
dc.identifier.citedreferenceGlobal Carex Group. 2015. Making Carex monophyletic (Cyperaceae, tribe Cariceae ): A new broader circumscription. Botanical Journal of the Linnean Society 179: 1 â 42.
dc.identifier.citedreferenceGlobal Carex Group. 2016a. Megaphylogenetic specimenâ level approaches to the Carex (Cyperaceae) phylogeny using regions ITS, ETS, and matK: Implications for classification. Systematic Botany 41: 500 â 518.
dc.identifier.citedreferenceGlobal Carex Group. 2016b. Specimens at the center: An informatics workflow and toolkit for specimenâ level analysis of public DNA database data. Systematic Botany 41: 529 â 539.
dc.identifier.citedreferenceGovaerts R, Jiménezâ Mejías P, Koopman J, Simpson D, Goetghebeur P, Wilson K, Egorova T, Bruhl J. 2019. World Checklist of Cyperaceae. Facilitated by the Royal Botanic Gardens, Kew. Available from http://wcsp.science.kew.org/. [accessed May 2019].
dc.identifier.citedreferenceGradstein F, Ogg J, Smith A. 2004. A geologic time scale. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceGreen PJ. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711 â 732.
dc.identifier.citedreferenceHendrichs M, Michalski S, Begerow D, Oberwinkler F, Hellwig F. 2004a. Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Plant Systematics and Evolution 246: 109 â 125.
dc.identifier.citedreferenceHendrichs M, Oberwinkler F, Begerow D, Bauer R. 2004b. Carex, subgenus Carex (Cyperaceae)â A phylogenetic approach using ITS sequences. Plant Systematics and Evolution 246: 89 â 107.
dc.identifier.citedreferenceHinchliff CE, Roalson EH. 2013. Using supermatrices for phylogenetic inquiry: An example using the sedges. Systematic Biology 62: 205 â 2019.
dc.identifier.citedreferenceHipp A, Rothrock P, Roalson E. 2009. The evolution of chromosome arrangements in Carex (Cyperaceae). The Botanical Review 75: 96 â 109.
dc.identifier.citedreferenceHipp AL. 2008. Phylogeny and patterns of convergence in Carex sect. Ovales (Cyperaceae): Evidence from ITS and 5.8S sequences. In: Naczi RFC, Ford BA eds. Sedges: Uses, Diversity and Systematics of the Cyperaceae. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis: Missouri Botanic Garden Press. 108: 197 â 214.
dc.identifier.citedreferenceHipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavenderâ Bares J, Crowl A, Deng M, Denk T, Fitzâ Gibbon, S, Gailing O, Gonzálezâ Elizondo MS, Gonzálezâ Rodríguez A, Grimm GW, Jiang XL, Kremer A, Lesur I, McVay JD, Plomion C, Rodríguezâ Correa H, Schulze ED, Simeone MC, Sork VL, Valenciaâ Avalos S. 2019. The genomic landscape of the global oak phylogeny. New Phytologist. Available from https://doi.org/10.1101/587253
dc.identifier.citedreferenceHipp AL, Reznicek AA, Rothrock PE, Weber JA. 2006. Phylogeny and classification of Carex section Ovales (Cyperaceae). International Journal of Plant Sciences 167: 1029 â 1048.
dc.identifier.citedreferenceHo SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367 â 380.
dc.identifier.citedreferenceHoffman MH, Gebauer S. 2016. Quantitative morphological and molecular divergence in replicated and parallel radiations in Carex (Cyperaceae) using symbolic data analysis. Systematic Botany 41: 552 â 557.
dc.identifier.citedreferenceHoffmann MH, Gebauer S, Rozycki TV. 2017. Assembly of the Arctic flora: Highly parallel and recurrent patterns in sedges ( Carex ). American Journal of Botany 104: 1 â 10.
dc.identifier.citedreferenceHuang X, Deng T, Moore MJ, Wang H, Li Z, Lin N, Yusupov Z, Tojibaev KS, Wang Y, Sun H. 2019. Tropical Asian origin, boreotropical migration and longâ distance dispersal in Nettles (Urticeae, Urticaceae). Molecular Phylogenetics and Evolution 137: 190 â 199.
dc.identifier.citedreferenceHug LA, Roger AJ. 2007. The impact of fossils and taxon sampling on ancient molecular dating analyses. Molecular Biology and Evolution 24: 1889 â 1897.
dc.identifier.citedreferenceHultén E. 1958. The amphiâ Atlantic plants and their phytogeographical connections. Kungliga Svenska Vetenskapsakademien Handlingar, series 4, 7. Stockholm: Almquist and Wiksell.
dc.identifier.citedreferenceIglesias A, Artabe AE, Morel EM. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnean Society 103: 409 â 422.
dc.identifier.citedreferenceJiménezâ Mejías P, Escudero M, Guerraâ Cárdenas S, Lye KA, Luceño M. 2011. Taxonomic delimitation and drivers of speciation in the Iberoâ North African Carex sect. Phacocystis riverâ shore group (Cyperaceae). American Journal of Botany 11: 1855 â 1867.
dc.identifier.citedreferenceJiménezâ Mejías P, Luceño M, Amstein Lye K, Brochmann C, Gussarova G. 2012a. Genetically diverse but with surprisingly little geographical structure: The complex history of the widespread herb Carex nigra (Cyperaceae). Journal of Biogeography 39: 2279 â 2291.
dc.identifier.citedreferenceJiménezâ Mejías P, Luceño M, Wilson KL, Waterway MJ, Roalson EH. 2016a. Clarification of the use of the terms perigynium and utricle in Carex L. (Cyperaceae). Systematic Botany 41: 519 â 528.
dc.identifier.citedreferenceJiménezâ Mejías P, Martínâ Bravo S, Luceño M. 2012b. Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: A molecular and cytogenetic approach. Systematic Botany 37: 382 â 398.
dc.identifier.citedreferenceJiménezâ Mejías P, Martinetto E. 2013. Toward an accurate taxonomic interpretation of Carex fossil fruits (Cyperaceae): A case study in section Phacocystis in the Western Palearctic. American Journal of Botany 100: 1580 â 1603.
dc.identifier.citedreferenceJiménezâ Mejías P, Martinetto E, Momohara A, Popova S, Smith SY, Roalson EH. 2016b. A commented synopsis of the preâ Pleistocene fossil record of Carex (Cyperaceae). The Botanical Review 82: 258 â 345.
dc.identifier.citedreferenceJohnson MA, Clark JR, Wagner WL, McDade LA. 2017. A molecular phylogeny of the Pacific clade of Cyrtandra (Gesneriaceae) reveals a Fijian origin, recent diversification, and the importance of founder events. Molecular Phylogenetics and Evolution 116: 30 â 48.
dc.identifier.citedreferenceKindlmann P, Schödelbauerová, I, Dixon A. 2007. Inverse latitudinal gradients in species diversity. In: Storch D, Marquet PA, Brown JH eds. Scaling biodiversity. Cambridge: Cambridge University Press. 246 â 257.
dc.identifier.citedreferenceKing MG, Roalson EH. 2009. Discordance between phylogenetics and coalescentâ based divergence modelling: Exploring phylogeographic patterns of speciation in the Carex macrocephala species complex. Molecular Ecology 18: 468 â 482.
dc.identifier.citedreferenceKoyama T. 1957. An enumeration of Hayata s Indo-Chinese collection of Cyperaceae. Contributions de l Institut Botanique de l Université de Montréal 70: 5â 64.
dc.identifier.citedreferenceKükenthal G. 1909. Cyperaceaeâ Caricoideae. In: Engler HGA ed. Das Pflanzenreich. Leipzig: W. Engelmann. 4: 1 â 247.
dc.identifier.citedreferenceLéveilléâ Bourret à , Donadío S, Gilmour CN, Starr JR. 2015. Rhodoscirpus (Cyperaceae: Scirpeae), a new South American sedge genus supported by molecular, morphological, anatomical and embryological data. Taxon 64: 931 â 944.
dc.identifier.citedreferenceLéveilléâ Bourret à , Gilmour CN, Starr JR, Naczi RFC, Spalink D, Sytsma KJ. 2014. Searching for the sister to sedges ( Carex ): Resolving relationships in the Cariceaeâ Dulichieaeâ Scirpeae clade (Cyperaceae). Botanical Journal of the Linnean Society 176: 1 â 21.
dc.identifier.citedreferenceLéveilléâ Bourret à , Starr JR. 2019. Molecular and morphological data reveal three new tribes within the Scirpoâ Caricoid Clade (Cyperoideae, Cyperaceae). Taxon 68: 218 â 245.
dc.identifier.citedreferenceLéveilléâ Bourret à , Starr JR, Ford BA. 2018a. A revision of Sumatroscirpus (Sumatroscirpeae, Cyperaceae) with discussions on Southeast Asian biogeography, general collecting, and homologues with Carex (Cariceae, Cyperaceae). Systematic Botany 43: 510 â 531.
dc.identifier.citedreferenceLéveilléâ Bourret à , Starr JR, Ford BA. 2018b. Why are there so many sedges? Sumatroscirpeae, a missing piece in the evolutionary puzzle of the giant genus Carex (Cyperaceae). Molecular Phylogenetics and Evolution 119: 93 â 104.
dc.identifier.citedreferenceLéveilléâ Bourret à , Starr JR, Ford BA, Moriarty Lemmon E, Lemmon AR. 2018c. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Systematic Biology 67: 94 â 112.
dc.identifier.citedreferenceLewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson, JV, Leng MJ, Machlus ML, Newton AE, Raine JI, Willenbring JK, Williams M, Wolfe AP. 2008. Midâ Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences USA 105: 10676 â 10680.
dc.identifier.citedreferenceMaguilla E, Escudero M, Luceño M. 2018. Vicariance versus dispersal across Beringian land bridges to explain circumpolar distribution: A case study in plants with high dispersal potential. Journal of Biogeography 45: 771 â 783.
dc.identifier.citedreferenceMaguilla E, Escudero M, Waterway MJ, Hipp AL, Luceño M. 2015. Phylogeny, systematics, and trait evolution of Carex section Glareosae. American Journal of Botany 102: 1128 â 1144.
dc.identifier.citedreferenceMai DH, Walther H. 1988. Die pliozänen Floren von Thüringen, Deutsche Demokratische Republik. Quartärpaläontologie 7: 55 â 297.
dc.identifier.citedreferenceMairal M, Sanmartín I, Pellissier L. 2017. Lineageâ specific climatic niche drives the tempo of vicariance in the Rand Flora. Journal of Biogeography 44: 911 â 923.
dc.identifier.citedreferenceManchester ST, Chen ZD, Lu AM, Uemura K. 2009. Eastern Asian endemic seed plant genera and their palaeogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47: 1 â 42.
dc.identifier.citedreferenceMárquezâ Corro JI, Escudero M, Martínâ Bravo S, Villaverde T, Luceño M. 2017. Longâ distance dispersal explains the bipolar disjunction in Carex macloviana. American Journal of Botany 104: 663 â 673.
dc.identifier.citedreferenceMárquezâ Corro JI, Martínâ Bravo S, Spalink D, Luceño M, Escudero M. 2019. Inferring hypothesisâ based transitions in cladeâ specific models of chromosome number evolution in sedges (Cyperaceae). Molecular Phylogenetics and Evolution 135: 203 â 209.
dc.identifier.citedreferenceMartínâ Bravo S, Escudero M, Míguez M, Jiménezâ Mejías, P, Luceño M. 2013. Molecular and morphological evidence for a new species from South Africa: Carex rainbowii (Cyperaceae). South African Journal of Botany 87: 85 â 91.
dc.identifier.citedreferenceMatzke NJ. 2013. Probabilistic historical biogeography: New models for founderâ event speciation, imperfect detection, and fossils allow improved accuracy and modelâ testing. Frontiers of Biogeography 5: 242 â 248.
dc.identifier.citedreferenceMatzke NJ. 2014a. BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis with R Scripts, version 1.1.1. Available from https://rdrr.io/cran/BioGeoBEARS [accessed June 2019].
dc.identifier.citedreferenceMatzke NJ. 2014b. Model selection in historical biogeography reveals that founderâ event speciation is a crucial process in island clades. Systematic Biology 63: 951 â 970.
dc.identifier.citedreferenceMatzke NJ. 2016. Stochastic mapping under biogeographical models. PhyloWiki BiogeoBEARS website. Available from http://phylo.wikidot.com/biogeobears#stochastic_mapping [accessed June 2019]
dc.identifier.citedreferenceMello B, Schrago CG. 2014. Assignment of calibration information to deeper phylogenetic nodes is more effective in obtaining precise and accurate divergence time estimates. Evolutionary Bioinformatics Online 10: 79 â 85.
dc.identifier.citedreferenceMcGee D, Morenoâ Chamarro E, Green B, Marshall J, Galbraith E, Bradtmiller L. 2018. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts. Quaternary Science Reviews 180: 214 â 228.
dc.identifier.citedreferenceMíguez M, Gehrke B, Maguilla E, Jiménezâ Mejías P, Martínâ Bravo S. 2017. Carex sect. Rhynchocystis (Cyperaceae): A Miocene subtropical relict in the Western Palaearctic showing a dispersalâ derived Rand Flora pattern. Journal of Biogeography 44: 2211 â 2224.
dc.identifier.citedreferenceMilne RI, Abbott RJ. 2002. The origin and evolution of Tertiary relict flora. Advances in Botanical Research 38: 281 â 314.
dc.identifier.citedreferenceMiller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments (GCE10), 14 November, 2010. New Orleans, LA: IEEE. 1â 8.
dc.identifier.citedreferenceMildenhall DC. 1980. New Zealand late Cretaceous and Cenozoic plant biogeography: A contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31: 197 â 233.
dc.identifier.citedreferenceMolina A, Chung Kâ S, Hipp AL. 2015. Molecular and morphological perspectives on the circumscription of Carex section Heleoglochin (Cyperaceae). Plant Systematics and Evolution 301: 2419 â 2439.
dc.identifier.citedreferenceMoreau CS, Bell CD. 2013. Testing the museum versus cradle tropical biological diversity hypothesis: Phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67: 2240 â 2257.
dc.identifier.citedreferenceNelmes E. 1951. The genus Carex in Malaysia. Reinwardtia 1: 221 â 450.
dc.identifier.citedreferenceNogales M, Heleno R, Traveset A, Vargas P. 2012. Evidence for overlooked mechanisms of longâ distance seed dispersal to and between oceanic islands. New Phytologist 194: 313 â 317.
dc.identifier.citedreferenceOtero A, Jiménezâ Mejías P, Valcárcel V, Vargas P. 2019. Being in the right place at the right time? Parallel diversification bursts favored by the persistence of ancient epizoochorous traits and hidden factors in Cynoglossoideae. American Journal of Botany 106: 438 â 452.
dc.identifier.citedreferencePender JE. 2016. Climatic niche estimation, trait evolution and species richness in North American Carex (Cyperaceae). PhD. Dissertation. Ottawa: University of Ottawa.
dc.identifier.citedreferencePlummer M, Best N, Cowles K, Vines K. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6: 7 â 11.
dc.identifier.citedreferencePokorny L, Riina R, Mairal M, Meseguer AS, Culshaw V, Cendoya J, Serrano M, Carbajal R, Ortiz S, Heuertz M, Sanmartín I. 2015. Living on the edge: Timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Frontiers in Genetics 6: 1 â 15.
dc.identifier.citedreferencePole M. 2014. The Miocene climate in New Zealand: Estimates from paleobotanical data. Palaeontologia Electronica 17: 27A.
dc.identifier.citedreferencePOWO. 2019. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Avalaible from http://www.plantsoftheworldonline.org [accessed 22 July 2019]
dc.identifier.citedreferenceRabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversityâ dependence on phylogenetic trees. PLoS One 9: e89543
dc.identifier.citedreferenceRabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG. 2014. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution 5: 701 â 707.
dc.identifier.citedreferenceRaymond M. 1951. Sedges as material for phytogeographical studies. Mémoires du Jardin Botanique de Montréal 20: 2 â 23.
dc.identifier.citedreferenceRaymond M. 1955. Cypéracées d Indoâ Chine. I. Naturaliste Canadien 82: 146 â 165.
dc.identifier.citedreferenceRaymond M. 1959. Carices Indochinenses necnon Siamensis. Mémoires du Jardin Botanique de Montréal 53: 1 â 125.
dc.identifier.citedreferenceRee RH, Moore BR, Webb CO, Donoghue MJ. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 2299 â 2311.
dc.identifier.citedreferenceRee RH, Sanmartín I. 2018. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45: 741 â 749.
dc.identifier.citedreferenceRee RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4 â 14.
dc.identifier.citedreferenceReznicek AA. 1990. Evolution in sedges ( Carex, Cyperaceae). Canadian Journal of Botany 68: 1409 â 1432.
dc.identifier.citedreferenceRoalson EH, Columbus JT, Friar EA. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnTâ Lâ F (cpDNA) region sequences: Assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Systematic Botany 26: 318 â 341.
dc.identifier.citedreferenceRoalson EH, Friar EA. 2004a. Phylogenetic relationships and biogeographic patterns in North American members of Carex section Acrocystis (Cyperaceae) using nrDNA ITS and ETS sequence data. Plant Systematics and Evolution 243: 175 â 187.
dc.identifier.citedreferenceRoalson EH, Friar EA. 2004b. Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analyses of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships. Molecular Phylogenetics and Evolution 33: 671 â 686.
dc.identifier.citedreferenceRonquist F. 1997. Dispersalâ vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46: 195 â 203.
dc.identifier.citedreferenceRose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ. 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molecular Phylogenetics and Evolution 122: 59 â 79.
dc.identifier.citedreferenceRuhfel BR, Bove CP, Philbrick CT, Davis CC. 2016. Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade. American Journal of Botany 103: 1117 â 1128.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.