Nonlinear Zâ score modeling for improved detection of cognitive abnormality
Kornak, John; Fields, Julie; Kremers, Walter; Farmer, Sara; Heuer, Hilary W.; Forsberg, Leah; Brushaber, Danielle; Rindels, Amy; Dodge, Hiroko; Weintraub, Sandra; Besser, Lilah; Appleby, Brian; Bordelon, Yvette; Bove, Jessica; Brannelly, Patrick; Caso, Christina; Coppola, Giovanni; Dever, Reilly; Dheel, Christina; Dickerson, Bradford; Dickinson, Susan; Dominguez, Sophia; Domoto‐reilly, Kimiko; Faber, Kelley; Ferrall, Jessica; Fishman, Ann; Fong, Jamie; Foroud, Tatiana; Gavrilova, Ralitza; Gearhart, Deb; Ghazanfari, Behnaz; Ghoshal, Nupur; Goldman, Jill; Graff‐radford, Jonathan; Graff‐radford, Neill; Grant, Ian M.; Grossman, Murray; Haley, Dana; Hsiao, John; Hsiung, Robin; Huey, Edward D.; Irwin, David; Jones, David; Jones, Lynne; Kantarci, Kejal; Karydas, Anna; Kaufer, Daniel; Kerwin, Diana; Knopman, David; Kraft, Ruth; Kramer, Joel; Kukull, Walter; Lapid, Maria; Litvan, Irene; Ljubenkov, Peter; Lucente, Diane; Lungu, Codrin; Mackenzie, Ian; Maldonado, Miranda; Manoochehri, Masood; McGinnis, Scott; McKinley, Emily; Mendez, Mario; Miller, Bruce; Multani, Namita; Onyike, Chiadi; Padmanabhan, Jaya; Pantelyat, Alexander; Pearlman, Rodney; Petrucelli, Len; Potter, Madeline; Rademakers, Rosa; Ramos, Eliana Marisa; Rankin, Katherine; Rascovsky, Katya; Roberson, Erik D.; Rogalski‐miller, Emily; Sengdy, Pheth; Shaw, Les; Staffaroni, Adam M.; Sutherland, Margaret; Syrjanen, Jeremy; Tartaglia, Carmela; Tatton, Nadine; Taylor, Joanne; Toga, Arthur; Trojanowski, John; Wang, Ping; Wong, Bonnie; Wszolek, Zbigniew; Boeve, Brad; Boxer, Adam; Rosen, Howard
2019-12
Citation
Kornak, John; Fields, Julie; Kremers, Walter; Farmer, Sara; Heuer, Hilary W.; Forsberg, Leah; Brushaber, Danielle; Rindels, Amy; Dodge, Hiroko; Weintraub, Sandra; Besser, Lilah; Appleby, Brian; Bordelon, Yvette; Bove, Jessica; Brannelly, Patrick; Caso, Christina; Coppola, Giovanni; Dever, Reilly; Dheel, Christina; Dickerson, Bradford; Dickinson, Susan; Dominguez, Sophia; Domoto‐reilly, Kimiko ; Faber, Kelley; Ferrall, Jessica; Fishman, Ann; Fong, Jamie; Foroud, Tatiana; Gavrilova, Ralitza; Gearhart, Deb; Ghazanfari, Behnaz; Ghoshal, Nupur; Goldman, Jill; Graff‐radford, Jonathan ; Graff‐radford, Neill ; Grant, Ian M.; Grossman, Murray; Haley, Dana; Hsiao, John; Hsiung, Robin; Huey, Edward D.; Irwin, David; Jones, David; Jones, Lynne; Kantarci, Kejal; Karydas, Anna; Kaufer, Daniel; Kerwin, Diana; Knopman, David; Kraft, Ruth; Kramer, Joel; Kukull, Walter; Lapid, Maria; Litvan, Irene; Ljubenkov, Peter; Lucente, Diane; Lungu, Codrin; Mackenzie, Ian; Maldonado, Miranda; Manoochehri, Masood; McGinnis, Scott; McKinley, Emily; Mendez, Mario; Miller, Bruce; Multani, Namita; Onyike, Chiadi; Padmanabhan, Jaya; Pantelyat, Alexander; Pearlman, Rodney; Petrucelli, Len; Potter, Madeline; Rademakers, Rosa; Ramos, Eliana Marisa; Rankin, Katherine; Rascovsky, Katya; Roberson, Erik D.; Rogalski‐miller, Emily ; Sengdy, Pheth; Shaw, Les; Staffaroni, Adam M.; Sutherland, Margaret; Syrjanen, Jeremy; Tartaglia, Carmela; Tatton, Nadine; Taylor, Joanne; Toga, Arthur; Trojanowski, John; Wang, Ping; Wong, Bonnie; Wszolek, Zbigniew; Boeve, Brad; Boxer, Adam; Rosen, Howard (2019). "Nonlinear Zâ score modeling for improved detection of cognitive abnormality." Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11(C): 797-808.
Abstract
IntroductionConventional Zâ scores are generated by subtracting the mean and dividing by the standard deviation. More recent methods linearly correct for age, sex, and education, so that these â adjustedâ Zâ scores better represent whether an individual’s cognitive performance is abnormal. Extreme negative Zâ scores for individuals relative to this normative distribution are considered indicative of cognitive deficiency.MethodsIn this article, we consider nonlinear shape constrained additive models accounting for age, sex, and education (correcting for nonlinearity). Additional shape constrained additive models account for varying standard deviation of the cognitive scores with age (correcting for heterogeneity of variance).ResultsCorrected Zâ scores based on nonlinear shape constrained additive models provide improved adjustment for age, sex, and education, as indicated by higher adjustedâ R2.DiscussionNonlinearly corrected Zâ scores with respect to age, sex, and education with ageâ varying residual standard deviation allow for improved detection of nonâ normative extreme cognitive scores.Publisher
Wiley Periodicals, Inc. Chapman and Hall/CRC
ISSN
2352-8729 2352-8729
Other DOIs
Types
Article
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.