Nonlinear Zâ score modeling for improved detection of cognitive abnormality
dc.contributor.author | Kornak, John | |
dc.contributor.author | Fields, Julie | |
dc.contributor.author | Kremers, Walter | |
dc.contributor.author | Farmer, Sara | |
dc.contributor.author | Heuer, Hilary W. | |
dc.contributor.author | Forsberg, Leah | |
dc.contributor.author | Brushaber, Danielle | |
dc.contributor.author | Rindels, Amy | |
dc.contributor.author | Dodge, Hiroko | |
dc.contributor.author | Weintraub, Sandra | |
dc.contributor.author | Besser, Lilah | |
dc.contributor.author | Appleby, Brian | |
dc.contributor.author | Bordelon, Yvette | |
dc.contributor.author | Bove, Jessica | |
dc.contributor.author | Brannelly, Patrick | |
dc.contributor.author | Caso, Christina | |
dc.contributor.author | Coppola, Giovanni | |
dc.contributor.author | Dever, Reilly | |
dc.contributor.author | Dheel, Christina | |
dc.contributor.author | Dickerson, Bradford | |
dc.contributor.author | Dickinson, Susan | |
dc.contributor.author | Dominguez, Sophia | |
dc.contributor.author | Domoto‐reilly, Kimiko | |
dc.contributor.author | Faber, Kelley | |
dc.contributor.author | Ferrall, Jessica | |
dc.contributor.author | Fishman, Ann | |
dc.contributor.author | Fong, Jamie | |
dc.contributor.author | Foroud, Tatiana | |
dc.contributor.author | Gavrilova, Ralitza | |
dc.contributor.author | Gearhart, Deb | |
dc.contributor.author | Ghazanfari, Behnaz | |
dc.contributor.author | Ghoshal, Nupur | |
dc.contributor.author | Goldman, Jill | |
dc.contributor.author | Graff‐radford, Jonathan | |
dc.contributor.author | Graff‐radford, Neill | |
dc.contributor.author | Grant, Ian M. | |
dc.contributor.author | Grossman, Murray | |
dc.contributor.author | Haley, Dana | |
dc.contributor.author | Hsiao, John | |
dc.contributor.author | Hsiung, Robin | |
dc.contributor.author | Huey, Edward D. | |
dc.contributor.author | Irwin, David | |
dc.contributor.author | Jones, David | |
dc.contributor.author | Jones, Lynne | |
dc.contributor.author | Kantarci, Kejal | |
dc.contributor.author | Karydas, Anna | |
dc.contributor.author | Kaufer, Daniel | |
dc.contributor.author | Kerwin, Diana | |
dc.contributor.author | Knopman, David | |
dc.contributor.author | Kraft, Ruth | |
dc.contributor.author | Kramer, Joel | |
dc.contributor.author | Kukull, Walter | |
dc.contributor.author | Lapid, Maria | |
dc.contributor.author | Litvan, Irene | |
dc.contributor.author | Ljubenkov, Peter | |
dc.contributor.author | Lucente, Diane | |
dc.contributor.author | Lungu, Codrin | |
dc.contributor.author | Mackenzie, Ian | |
dc.contributor.author | Maldonado, Miranda | |
dc.contributor.author | Manoochehri, Masood | |
dc.contributor.author | McGinnis, Scott | |
dc.contributor.author | McKinley, Emily | |
dc.contributor.author | Mendez, Mario | |
dc.contributor.author | Miller, Bruce | |
dc.contributor.author | Multani, Namita | |
dc.contributor.author | Onyike, Chiadi | |
dc.contributor.author | Padmanabhan, Jaya | |
dc.contributor.author | Pantelyat, Alexander | |
dc.contributor.author | Pearlman, Rodney | |
dc.contributor.author | Petrucelli, Len | |
dc.contributor.author | Potter, Madeline | |
dc.contributor.author | Rademakers, Rosa | |
dc.contributor.author | Ramos, Eliana Marisa | |
dc.contributor.author | Rankin, Katherine | |
dc.contributor.author | Rascovsky, Katya | |
dc.contributor.author | Roberson, Erik D. | |
dc.contributor.author | Rogalski‐miller, Emily | |
dc.contributor.author | Sengdy, Pheth | |
dc.contributor.author | Shaw, Les | |
dc.contributor.author | Staffaroni, Adam M. | |
dc.contributor.author | Sutherland, Margaret | |
dc.contributor.author | Syrjanen, Jeremy | |
dc.contributor.author | Tartaglia, Carmela | |
dc.contributor.author | Tatton, Nadine | |
dc.contributor.author | Taylor, Joanne | |
dc.contributor.author | Toga, Arthur | |
dc.contributor.author | Trojanowski, John | |
dc.contributor.author | Wang, Ping | |
dc.contributor.author | Wong, Bonnie | |
dc.contributor.author | Wszolek, Zbigniew | |
dc.contributor.author | Boeve, Brad | |
dc.contributor.author | Boxer, Adam | |
dc.contributor.author | Rosen, Howard | |
dc.date.accessioned | 2020-01-13T15:05:38Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-01-13T15:05:38Z | |
dc.date.issued | 2019-12 | |
dc.identifier.citation | Kornak, John; Fields, Julie; Kremers, Walter; Farmer, Sara; Heuer, Hilary W.; Forsberg, Leah; Brushaber, Danielle; Rindels, Amy; Dodge, Hiroko; Weintraub, Sandra; Besser, Lilah; Appleby, Brian; Bordelon, Yvette; Bove, Jessica; Brannelly, Patrick; Caso, Christina; Coppola, Giovanni; Dever, Reilly; Dheel, Christina; Dickerson, Bradford; Dickinson, Susan; Dominguez, Sophia; Domoto‐reilly, Kimiko ; Faber, Kelley; Ferrall, Jessica; Fishman, Ann; Fong, Jamie; Foroud, Tatiana; Gavrilova, Ralitza; Gearhart, Deb; Ghazanfari, Behnaz; Ghoshal, Nupur; Goldman, Jill; Graff‐radford, Jonathan ; Graff‐radford, Neill ; Grant, Ian M.; Grossman, Murray; Haley, Dana; Hsiao, John; Hsiung, Robin; Huey, Edward D.; Irwin, David; Jones, David; Jones, Lynne; Kantarci, Kejal; Karydas, Anna; Kaufer, Daniel; Kerwin, Diana; Knopman, David; Kraft, Ruth; Kramer, Joel; Kukull, Walter; Lapid, Maria; Litvan, Irene; Ljubenkov, Peter; Lucente, Diane; Lungu, Codrin; Mackenzie, Ian; Maldonado, Miranda; Manoochehri, Masood; McGinnis, Scott; McKinley, Emily; Mendez, Mario; Miller, Bruce; Multani, Namita; Onyike, Chiadi; Padmanabhan, Jaya; Pantelyat, Alexander; Pearlman, Rodney; Petrucelli, Len; Potter, Madeline; Rademakers, Rosa; Ramos, Eliana Marisa; Rankin, Katherine; Rascovsky, Katya; Roberson, Erik D.; Rogalski‐miller, Emily ; Sengdy, Pheth; Shaw, Les; Staffaroni, Adam M.; Sutherland, Margaret; Syrjanen, Jeremy; Tartaglia, Carmela; Tatton, Nadine; Taylor, Joanne; Toga, Arthur; Trojanowski, John; Wang, Ping; Wong, Bonnie; Wszolek, Zbigniew; Boeve, Brad; Boxer, Adam; Rosen, Howard (2019). "Nonlinear Zâ score modeling for improved detection of cognitive abnormality." Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11(C): 797-808. | |
dc.identifier.issn | 2352-8729 | |
dc.identifier.issn | 2352-8729 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/152598 | |
dc.description.abstract | IntroductionConventional Zâ scores are generated by subtracting the mean and dividing by the standard deviation. More recent methods linearly correct for age, sex, and education, so that these â adjustedâ Zâ scores better represent whether an individual’s cognitive performance is abnormal. Extreme negative Zâ scores for individuals relative to this normative distribution are considered indicative of cognitive deficiency.MethodsIn this article, we consider nonlinear shape constrained additive models accounting for age, sex, and education (correcting for nonlinearity). Additional shape constrained additive models account for varying standard deviation of the cognitive scores with age (correcting for heterogeneity of variance).ResultsCorrected Zâ scores based on nonlinear shape constrained additive models provide improved adjustment for age, sex, and education, as indicated by higher adjustedâ R2.DiscussionNonlinearly corrected Zâ scores with respect to age, sex, and education with ageâ varying residual standard deviation allow for improved detection of nonâ normative extreme cognitive scores. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Chapman and Hall/CRC | |
dc.subject.other | Generalized additive models | |
dc.subject.other | Shape constrained additive models | |
dc.subject.other | Nonlinear Zâ score correction | |
dc.subject.other | Neuropsychological testing scores | |
dc.subject.other | Heterogenous variance modeling | |
dc.title | Nonlinear Zâ score modeling for improved detection of cognitive abnormality | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Neurology and Neurosciences | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152598/1/dad2jdadm201908003.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/152598/2/dad2jdadm201908003-sup-0001.pdf | |
dc.identifier.doi | 10.1016/j.dadm.2019.08.003 | |
dc.identifier.source | Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring | |
dc.identifier.citedreference | R. Holtzer, Y. Goldin, M. Zimmerman, M. Katz, H. Buschke, R.B. Lipton. Robust norms for selected neuropsychological tests in older adults. Archives of Clinical Neuropsychology. 23: 2008; 531 â 541 | |
dc.identifier.citedreference | S. De Santi, E. Pirraglia, W. Barr, J. Babb, S. Williams, K. Rogers, et al. Robust and conventional neuropsychology norms: diagnosis and prediction of ageâ related cognitive decline. Neuropsychology. 22: 2008; 469 â 484 | |
dc.identifier.citedreference | T.N. Tombaugh, J. Kozak, L. Rees. Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol. 14: 1999; 167 â 177 | |
dc.identifier.citedreference | O. Pedraza, J.A. Lucas, G.E. Smith, R.C. Petersen, N.R. Graffâ Radford, R.J. Ivnik. Robust and expanded norms for the Dementia Rating Scale. Archives of Clinical Neuropsychology. 25: 2010; 347 â 358 | |
dc.identifier.citedreference | E.M. Tuckerâ Drob, K.E. Johnson, R.N. Jones. The cognitive reserve hypothesis: a longitudinal examination of ageâ associated declines in reasoning and processing speed. Dev Psychol. 45: 2009; 431 â 446 | |
dc.identifier.citedreference | M. Berres, A.U. Monsch, F. Bernasconi, B. Thalmann, H.B. Stähelin. Normal ranges of neuropsychological tests for the diagnosis of Alzheimer’s disease. Stud Health Technology Inform, 2000; 195 â 202 | |
dc.identifier.citedreference | S. Weintraub, L. Besser, H.H. Dodge, M. Teylan, S. Ferris, F.C. Goldstein, et al. Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer Dis Associated Disord. 32: 2018; 10 â 17 | |
dc.identifier.citedreference | S.M. McCurry, S.D. Edland, L. Teri, W.A. Kukull, J.D. Bowen, W.C. McCormick, et al. The cognitive abilities screening instrument (CASI): data from a cohort of 2524 cognitively intact elderly. Int J Geriatr Psychiatry. 14: 1999; 882 â 888 | |
dc.identifier.citedreference | T.J. Hastie, R.J. Tibshirani. Generalized Additive Models. 1990; Chapman and Hall/CRC: Boca Raton, Fla | |
dc.identifier.citedreference | Simon Wood. Generalized Additive Models: An Introduction with R. 2nd ed.. 2017; Chapman and Hall/CRC: Boca Raton, FL | |
dc.identifier.citedreference | N. Pya, S.N. Wood. Shape constrained additive models. Stat Comput. 25: 2015; 543 â 559 | |
dc.identifier.citedreference | R Core Team. R: A language and environment for statistical computing. 2019; R Foundation for Statistical Computing: Vienna, Austria, Available at: https://www.Râ project.org/. Accessed November 26, 2019. | |
dc.identifier.citedreference | R.K. Heaton, S.W. Miller, M.J. Taylor, I. Grant. Revised comprehensive norms for an expanded Halsteadâ Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. 2004; Psychological Assessment Resources: Lutz, FL | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.